Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36971393

RESUMO

MOTIVATION: A large number of studies have shown that circular RNA (circRNA) affects biological processes by competitively binding miRNA, providing a new perspective for the diagnosis, and treatment of human diseases. Therefore, exploring the potential circRNA-miRNA interactions (CMIs) is an important and urgent task at present. Although some computational methods have been tried, their performance is limited by the incompleteness of feature extraction in sparse networks and the low computational efficiency of lengthy data. RESULTS: In this paper, we proposed JSNDCMI, which combines the multi-structure feature extraction framework and Denoising Autoencoder (DAE) to meet the challenge of CMI prediction in sparse networks. In detail, JSNDCMI integrates functional similarity and local topological structure similarity in the CMI network through the multi-structure feature extraction framework, then forces the neural network to learn the robust representation of features through DAE and finally uses the Gradient Boosting Decision Tree classifier to predict the potential CMIs. JSNDCMI produces the best performance in the 5-fold cross-validation of all data sets. In the case study, seven of the top 10 CMIs with the highest score were verified in PubMed. AVAILABILITY: The data and source code can be found at https://github.com/1axin/JSNDCMI.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , RNA Circular , Redes Neurais de Computação , Software , Biologia Computacional/métodos
2.
Brief Funct Genomics ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37539561

RESUMO

Recently, the role of competing endogenous RNAs in regulating gene expression through the interaction of microRNAs has been closely associated with the expression of circular RNAs (circRNAs) in various biological processes such as reproduction and apoptosis. While the number of confirmed circRNA-miRNA interactions (CMIs) continues to increase, the conventional in vitro approaches for discovery are expensive, labor intensive, and time consuming. Therefore, there is an urgent need for effective prediction of potential CMIs through appropriate data modeling and prediction based on known information. In this study, we proposed a novel model, called DeepCMI, that utilizes multi-source information on circRNA/miRNA to predict potential CMIs. Comprehensive evaluations on the CMI-9905 and CMI-9589 datasets demonstrated that DeepCMI successfully infers potential CMIs. Specifically, DeepCMI achieved AUC values of 90.54% and 94.8% on the CMI-9905 and CMI-9589 datasets, respectively. These results suggest that DeepCMI is an effective model for predicting potential CMIs and has the potential to significantly reduce the need for downstream in vitro studies. To facilitate the use of our trained model and data, we have constructed a computational platform, which is available at http://120.77.11.78/DeepCMI/. The source code and datasets used in this work are available at https://github.com/LiYuechao1998/DeepCMI.

3.
IEEE J Biomed Health Inform ; 27(1): 573-582, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301791

RESUMO

Identifying protein targets for drugs establishes an indispensable knowledge foundation for drug repurposing and drug development. Though expensive and time-consuming, vitro trials are widely employed to discover drug targets, and the existing relevant computational algorithms still cannot satisfy the demand for real application in drug R&D with regards to the prediction accuracy and performance efficiency, which are urgently needed to be improved. To this end, we propose here the PPAEDTI model, which uses the graph personalized propagation technique to predict drug-target interactions from the known interaction network. To evaluate the prediction performance, six benchmark datasets were used for testing with some state-of-the-art methods compared. As a result, using the 5-fold cross-validation, the proposed PPAEDTI model achieves average AUCs>90% on 5 collected datasets. We also manually checked the top-20 prediction list for 2 proteins (hsa:775 and hsa:779) and a kind of drug (D00618), and successfully confirmed 18, 17, and 20 items from the public datasets, respectively. The experimental results indicate that, given known drug-target interactions, the PPAEDTI model can provide accurate predictions for the new ones, which is anticipated to serve as a useful tool for pharmacology research. Using the proposed model that was trained with the collected datasets, we have built a computational platform that is accessible at http://120.77.11.78/PPAEDTI/ and corresponding codes and datasets are also released.


Assuntos
Algoritmos , Reposicionamento de Medicamentos , Humanos , Interações Medicamentosas , Área Sob a Curva , Proteínas/metabolismo
4.
Front Genet ; 14: 1122909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845392

RESUMO

LncRNA-protein interaction plays an important role in the development and treatment of many human diseases. As the experimental approaches to determine lncRNA-protein interactions are expensive and time-consuming, considering that there are few calculation methods, therefore, it is urgent to develop efficient and accurate methods to predict lncRNA-protein interactions. In this work, a model for heterogeneous network embedding based on meta-path, namely LPIH2V, is proposed. The heterogeneous network is composed of lncRNA similarity networks, protein similarity networks, and known lncRNA-protein interaction networks. The behavioral features are extracted in a heterogeneous network using the HIN2Vec method of network embedding. The results showed that LPIH2V obtains an AUC of 0.97 and ACC of 0.95 in the 5-fold cross-validation test. The model successfully showed superiority and good generalization ability. Compared to other models, LPIH2V not only extracts attribute characteristics by similarity, but also acquires behavior properties by meta-path wandering in heterogeneous networks. LPIH2V would be beneficial in forecasting interactions between lncRNA and protein.

5.
Front Genet ; 13: 919264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910223

RESUMO

As a novel target in pharmacy, microRNA (miRNA) can regulate gene expression under specific disease conditions to produce specific proteins. To date, many researchers leveraged miRNA to reveal drug efficacy and pathogenesis at the molecular level. As we all know that conventional wet experiments suffer from many problems, including time-consuming, labor-intensity, and high cost. Thus, there is an urgent need to develop a novel computational model to facilitate the identification of miRNA-drug interactions (MDIs). In this work, we propose a novel bipartite network embedding-based method called BNEMDI to predict MDIs. First, the Bipartite Network Embedding (BiNE) algorithm is employed to learn the topological features from the network. Then, the inherent attributes of drugs and miRNAs are expressed as attribute features by MACCS fingerprints and k-mers. Finally, we feed these features into deep neural network (DNN) for training the prediction model. To validate the prediction ability of the BNEMDI model, we apply it to five different benchmark datasets under five-fold cross-validation, and the proposed model obtained excellent AUC values of 0.9568, 0.9420, 0.8489, 0.8774, and 0.9005 in ncDR, RNAInter, SM2miR1, SM2miR2, and SM2miR MDI datasets, respectively. To further verify the prediction performance of the BNEMDI model, we compare it with some existing powerful methods. We also compare the BiNE algorithm with several different network embedding methods. Furthermore, we carry out a case study on a common drug named 5-fluorouracil. Among the top 50 miRNAs predicted by the proposed model, there were 38 verified by the experimental literature. The comprehensive experiment results demonstrated that our method is effective and robust for predicting MDIs. In the future work, we hope that the BNEMDI model can be a reliable supplement method for the development of pharmacology and miRNA therapeutics.

6.
Biology (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36671734

RESUMO

Abnormal microRNA (miRNA) functions play significant roles in various pathological processes. Thus, predicting drug-miRNA associations (DMA) may hold great promise for identifying the potential targets of drugs. However, discovering the associations between drugs and miRNAs through wet experiments is time-consuming and laborious. Therefore, it is significant to develop computational prediction methods to improve the efficiency of identifying DMA on a large scale. In this paper, a multiple features integration model (MFIDMA) is proposed to predict drug-miRNA association. Specifically, we first formulated known DMA as a bipartite graph and utilized structural deep network embedding (SDNE) to learn the topological features from the graph. Second, the Word2vec algorithm was utilized to construct the attribute features of the miRNAs and drugs. Third, two kinds of features were entered into the convolution neural network (CNN) and deep neural network (DNN) to integrate features and predict potential target miRNAs for the drugs. To evaluate the MFIDMA model, it was implemented on three different datasets under a five-fold cross-validation and achieved average AUCs of 0.9407, 0.9444 and 0.8919. In addition, the MFIDMA model showed reliable results in the case studies of Verapamil and hsa-let-7c-5p, confirming that the proposed model can also predict DMA in real-world situations. The model was effective in analyzing the neighbors and topological features of the drug-miRNA network by SDNE. The experimental results indicated that the MFIDMA is an accurate and robust model for predicting potential DMA, which is significant for miRNA therapeutics research and drug discovery.

7.
Front Genet ; 13: 839540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360836

RESUMO

Non-coding RNAs (ncRNAs) take essential effects on biological processes, like gene regulation. One critical way of ncRNA executing biological functions is interactions between ncRNA and RNA binding proteins (RBPs). Identifying proteins, involving ncRNA-protein interactions, can well understand the function ncRNA. Many high-throughput experiment have been applied to recognize the interactions. As a consequence of these approaches are time- and labor-consuming, currently, a great number of computational methods have been developed to improve and advance the ncRNA-protein interactions research. However, these methods may be not available to all RNAs and proteins, particularly processing new RNAs and proteins. Additionally, most of them cannot process well with long sequence. In this work, a computational method SAWRPI is proposed to make prediction of ncRNA-protein through sequence information. More specifically, the raw features of protein and ncRNA are firstly extracted through the k-mer sparse matrix with SVD reduction and learning nucleic acid symbols by natural language processing with local fusion strategy, respectively. Then, to classify easily, Hilbert Transformation is exploited to transform raw feature data to the new feature space. Finally, stacking ensemble strategy is adopted to learn high-level abstraction features automatically and generate final prediction results. To confirm the robustness and stability, three different datasets containing two kinds of interactions are utilized. In comparison with state-of-the-art methods and other results classifying or feature extracting strategies, SAWRPI achieved high performance on three datasets, containing two kinds of lncRNA-protein interactions. Upon our finding, SAWRPI is a trustworthy, robust, yet simple and can be used as a beneficial supplement to the task of predicting ncRNA-protein interactions.

8.
Biology (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36138829

RESUMO

Computational prediction of miRNAs, diseases, and genes associated with circRNAs has important implications for circRNA research, as well as provides a reference for wet experiments to save costs and time. In this study, SGCNCMI, a computational model combining multimodal information and graph convolutional neural networks, combines node similarity to form node information and then predicts associated nodes using GCN with a distributive contribution mechanism. The model can be used not only to predict the molecular level of circRNA-miRNA interactions but also to predict circRNA-cancer and circRNA-gene associations. The AUCs of circRNA-miRNA, circRNA-disease, and circRNA-gene associations in the five-fold cross-validation experiment of SGCNCMI is 89.42%, 84.18%, and 82.44%, respectively. SGCNCMI is one of the few models in this field and achieved the best results. In addition, in our case study, six of the top ten relationship pairs with the highest prediction scores were verified in PubMed.

9.
Front Genet ; 13: 958096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051691

RESUMO

Emerging evidence has revealed that circular RNA (circRNA) is widely distributed in mammalian cells and functions as microRNA (miRNA) sponges involved in transcriptional and posttranscriptional regulation of gene expression. Recognizing the circRNA-miRNA interaction provides a new perspective for the detection and treatment of human complex diseases. Compared with the traditional biological experimental methods used to predict the association of molecules, which are limited to the small-scale and are time-consuming and laborious, computing models can provide a basis for biological experiments at low cost. Considering that the proposed calculation model is limited, it is necessary to develop an effective computational method to predict the circRNA-miRNA interaction. This study thus proposed a novel computing method, named KGDCMI, to predict the interactions between circRNA and miRNA based on multi-source information extraction and fusion. The KGDCMI obtains RNA attribute information from sequence and similarity, capturing the behavior information in RNA association through a graph-embedding algorithm. Then, the obtained feature vector is extracted further by principal component analysis and sent to the deep neural network for information fusion and prediction. At last, KGDCMI obtains the prediction accuracy (area under the curve [AUC] = 89.30% and area under the precision-recall curve [AUPR] = 87.67%). Meanwhile, with the same dataset, KGDCMI is 2.37% and 3.08%, respectively, higher than the only existing model, and we conducted three groups of comparative experiments, obtaining the best classification strategy, feature extraction parameters, and dimensions. In addition, in the performed case study, 7 of the top 10 interaction pairs were confirmed in PubMed. These results suggest that KGDCMI is a feasible and useful method to predict the circRNA-miRNA interaction and can act as a reliable candidate for related RNA biological experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA