RESUMO
Sealing wet porous membranes is a major challenge when fabricating cell encapsulation devices. Herein, we report the development of an Autoclavable Transparent Thermal Cutter (ATTC) for reliably sealing wet nanofibrous membranes. Notably, the ATTC is autoclavable and transparent, thus enabling in situ visualization of the sealing process in a sterile environment and ensuring an appropriate seal. In addition, the ATTC could generate smooth, arbitrary-shaped sealing ends with excellent mechanical properties when sealing PA6, PVDF, and TPU nanofibrous tubes and PP microporous membranes. Importantly, the ATTC could reliably seal wet nanofibrous tubes, which can shoulder a burst pressure up to 313.2 ± 19.3 kPa without bursting at the sealing ends. Furthermore, the ATTC sealing process is highly compatible with the fabrication of cell encapsulation devices, as verified by viability, proliferation, cell escape, and cell function tests. We believe that the ATTC could be used to reliably seal cell encapsulation devices with minimal side effects.
RESUMO
The polycystic ovary syndrome (PCOS), a common endocrine disorder, is mainly related to infertility. Moreover, it is characterized by promoted androgen, suppressed ovulation and insulin resistance. Long non-coding RNA X inactive specific transcript (lncRNA XIST), known as an oncogene or a cancer inhabited factor, is involved in several disease. However, the diagnostic mechanisms of lncRNA XIST in PCOS have not been clarified. Our study aimed to explain whether lncRNA XIST regulates KGN cells proliferation and apoptosis via microRNA (miR)-212-3p/RASA1 axis in PCOS. Levels of lncRNA XIST, miR-212-3p and RASA1 in KGN cells were detected through reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. Fluorescence in situ Hybridization (FISH) was performed to confirm the expression of lncRNA XIST and miR-212-3p in KGN cells. StarBase and dual-luciferase reporter assay were applied for exploring the interaction between miR-212-3p and RASA1. Cell viability, apoptosis, protein expression of Bcl-2 and Bax were assessed by MTT, flow cytometry analysis, RT-qPCR and western blot, respectively. We found that lncRNA XIST was low-expressed, miR-212-3p was over-expressed, and RASA1 was dramatically down-regulated in KGN cells. LncRNA XIST negatively regulated miR-212-3p expression in KGN cells. MiR-212-3p interacted with RASA1 and negatively regulated RASA1 levels in KGN cells. Up-regulation of lncRNA XIST signally decreased cells viability, stimulated more apoptotic cells, enhanced Bax expression, and depressed Bcl-2 level in KGN cells. However, these observations were abolished after miR-212-3p mimic treatment. Furthermore, miR-212-3p inhibitor significantly inhibited cell proliferation, enhanced more apoptotic cells, increased Bax expression, and decreased Bcl-2 level in KGN cells, and these effects were eliminated by RASA1-siRNA transfection. Our observations revealed that lncRNA XIST protects against PCOS through regulating miR-212-3p/RASA1 axis, suggesting that lncRNA XIST may be a promising therapeutic target for PCOS therapy.
RESUMO
Most sheet facial masks for skincare are made of nonwovens and loaded with liquid active ingredients, which are usually opaque and require additives for long-term preservation. Herein, a Transparent Additive-Free Fibrous (TAFF) facial mask is reported for skin moisturizing. The TAFF facial mask consists of a bilayer fibrous membrane. The inner layer is fabricated by electrospinning functional components of gelatin (GE) and hyaluronic acid (HA) into a solid fibrous membrane to get rid of additives, the outer layer is an ultrathin PA6 fibrous membrane that is highly transparent, especially after absorbing water. The results indicate that the GE-HA membrane can quickly absorb water and become a transparent hydrogel film. By employing the hydrophobic PA6 membrane as the outer layer, directional water transport is achieved, which enables TAFF facial mask with excellent skin moisturizing effect. The skin moisture content is up to 84% ± 7% after placing the TAFF facial mask on the skin for 10 min. In addition, the relative transparency of the TAFF facial mask on the skin reaches 97.0% ± 1.9% when ultrathin PA6 membrane is used as the outer layer. The design of the transparent additive-free facial mask may serve as a guideline for developing new functional facial masks.
Assuntos
Face , Pele , Hidrogéis , Ácido HialurônicoRESUMO
OBJECTIVE: The aim of this study was to determine the relationship between multifidus degeneration and sex, age and side of protrusion in patients with lumbar disc herniation(LDH). METHODS: Data were collected from September 2015 to September 2022 from patients with L4/5 and L5/S1 LDH. A total of 104 patients (62 males and 42 females) were included in this study, and there were 35 and 69 cases of L4/5 and L5/S1 LDH, respectively. Patients were divided into 4 groups according to age: group 1 (20-29), group 2 (30-39), group 3 (40-49) and group 4 (50-59). Magnetic resonance spectroscopy analysis was used to observe the fat fraction (FF) and functional cross-sectional area (f-CSA) of the defatted multifidus muscle of the protruding side (affected side) and the nonprotruding side (healthy side) of the L4/5 and L5/S1 gaps to evaluate the relationship between multifidus degeneration and sex, age and protruding side in patients with LDH. RESULTS: Between sexes, the FF of the multifidus muscle was significantly greater in women than in men, regardless of whether it was on the affected or healthy side of the L4/5 segment or on the affected or healthy side of the L5/S1 segment (P < 0.05). Between age groups, there was a significantly positive relationship between the change in FF (%) of the multifidus muscle in patients with LDH and age, with increasing fatty infiltration of the multifidus increasing with age (P < 0.05); notably, there was a significant difference between group 4 and the remaining three groups but no significant difference between groups 1, 2 and 3. The f-CSA of the multifidus (cm2) was negatively correlated with age, with the f-CSA of the multifidus becoming more atrophic with increasing age; specifically, there was a significant difference between group 1 and the other three groups (P < 0.05) but not between groups 2, 3 and 4. Regarding the side of the herniated disc, (1) the differences in FF and f-CSA at the L4/5 and L5/S1 levels were not statistically significant between the affected side and the healthy side in patients with lumbar disc herniation at the L4/5 segment (P > 0.05); (2) the differences in FF and f-CSA at the L5/S1 level were not statistically significant between the affected side and the healthy side in patients with LDH at the L5/S1 segment (P > 0.05); (3) the difference between FF at the L4/5 level and f-CSA and FF at the L5/S1 level was not statistically significant (P > 0.05); and (4) the f-CSA at the L5/S1 level was significantly greater on the healthy side than on the affected side (P < 0.05). CONCLUSION: The proportion of lipoatrophy in female patients with L4/5 and L5/S1 disc herniations was greater than that in male patients. Lipoatrophy of the multifidus muscle increased with age and was significantly worse in patients over 50 years of age. The f-CSA of the multifidus muscle was negatively related to age, and the f-CSA of the multifidus muscle became more atrophic with increasing age. A comparison of degeneration showed no significant difference between the L4/5 patients and the L5/S1 patients in terms of f-CSA atrophy on the affected side of the herniated disc compared to the healthy side.
Assuntos
Deslocamento do Disco Intervertebral , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Músculos Paraespinais/diagnóstico por imagem , Nível de Saúde , Vértebras Lombares/diagnóstico por imagem , Medula EspinalRESUMO
Effective utilization of solar energy in battery systems is a promising solution to achieve sustainable and green development. In this work, a photoassisted Fe-air battery (PFAB) with two photoelectrodes of ZnO-TiO2 heterostructure and polyterthiophene (pTTh)-coated CuO (pTTh-CuO) grown on fluorine-doped tin oxide (FTO) is proposed. The band structure of semiconductors and the charge-transfer mechanism of heterostructure are studied. The electrochemical results show that the photogenerated electrons and holes play key roles in reducing the oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) overpotential in the discharging and charging processes, respectively. The short-circuit current density, the open-circuit voltage, and the maximum power output of the PFAB can reach 34.28 mA cm-2 , 1.15 V, and 5.69 mW cm-2 upon illumination, respectively. The photoassisted Fe-air battery exhibits a low charge voltage of 0.64 V for ZnO-TiO2 as photoelectrode and a discharge voltage of 1.38 V for pTTh-CuO as a photoelectrode at 0.1 mA cm-2 .
RESUMO
A photoinduced vicinal difluoroalkylation and aminosulfonylation of alkynes under photocatalysis was realized. The combination of ethyl 2-bromo-2,2-difluoroacetate, alkynes, and DABCOâ (SO2 )2 with hydrazines, catalyzed by 9-mes-10-methyl acridinium perchlorate in the presence of visible light, afforded (E)-ethyl 2,2-difluoro-4-aryl-4-sulfamoylbut-3-enoates in good yields with high stereoselectivity. This four-component reaction proceeds through radical addition with the insertion of sulfur dioxide.
RESUMO
A N-radical-initiated cyclization involving the sulfonylation of unactivated alkenes through insertion of sulfur dioxide in the presence of visible light under catalyst-free conditions is accomplished. A range of sulfonated 3,4-dihydro-2H-pyrroles can be generated in good yields under photoinduced sulfonylative conditions. Additionally, the corresponding 2-(3,4-dihydro-2H-pyrrol-2-yl)methylsulfonyl-1-arylethanones can be easily converted to 3,4-dihydro-2H-1,4-thiazine 1,1-dioxides. This photoinduced transformation occurs efficiently at room temperature under catalyst-free conditions, and various functional groups can be tolerated. A tandem radical process is involved through the iminyl radical-mediated cyclization with the insertion of sulfur dioxide; this process shows high efficiency and good selectivity.
RESUMO
Different nanostructures of TiO2 play an important role in the photocatalytic and photoelectronic applications. TiO2 nanotubes (TNTs) have received increasing attention for these applications due to their unique physicochemical properties. Focusing on highly functional TNTs (HF-TNTs) for photocatalytic and photoelectronic applications, this study describes the facile hydrothermal synthesis of HF-TNTs by using commercial and cheaper materials for cost-effective manufacturing. To prove the functionality and applicability, these TNTs are used as scattering structure in dye-sensitized solar cells (DSSCs). Photocatalytic, optical, Brunauer-Emmett-Teller (BET), electrochemical impedance spectrum, incident-photon-to-current efficiency, and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy characterizations are proving the functionality of HF-TNTs for DSSCs. HF-TNTs show 50% higher photocatalytic degradation rate and also 68% higher dye loading ability than conventional TNTs (C-TNTs). The DSSCs having HF-TNT and its composite-based multifunctional overlayer show effective light absorption, outstanding light scattering, lower interfacial resistance, longer electron lifetime, rapid electron transfer, and improved diffusion length, and consequently, J SC , quantum efficiency, and record photoconversion efficiency of 10.1% using commercial N-719 dye is achieved, for 1D-based DSSCs. These new and highly functional TNTs will be a concrete fundamental background toward the development of more functional applications in fuel cells, dye-sensitized solar cells, Li-ion batteries, photocatalysis process, ion-exchange/adsorption process, and photoelectrochemical devices.
RESUMO
A practical synthetic method for the generation of benzosultams via an intramolecular sp(2) C-H bond amination reaction of o-arylbenzenesulfonamides with PhI(OAc)2-I2 under metal-free conditions is developed. A broad range of substrates are tolerated under mild reaction conditions, affording bioactive benzosultams in good to excellent yields. The resulting benzothiazines could be conveniently transformed into their corresponding iodinated derivatives via electrophilic substitution reactions.
Assuntos
Sulfonamidas/química , Sulfonamidas/síntese química , Aminação , Cristalografia por Raios X , Modelos Moleculares , Estrutura MolecularRESUMO
A practical and convergent synthesis of biologically active 1-(N-acyl)-1-aminoisoquinolines from the reaction of 2-alkynylbenzaldoximes with amides has been realized. The readily available amides could be activated with triflic anhydride (Tf2O) and could efficiently participate in the domino reaction of 2-alkynylbenzaldoximes when catalyzed by AgOTf, thus providing various acylated 1-aminoisoquinolines with up to 98% yields.
Assuntos
Anidridos/química , Isoquinolinas/síntese química , Mesilatos/química , Acilação , Isoquinolinas/química , Estrutura MolecularRESUMO
BACKGROUND: Long non-coding RNAs (lncRNAs) play a critical role in the development of ovarian cancer (OC). OBJECTIVE: The study aimed to determine the role of LncRNA LINC01123 in OC bio-progression, which is upregulated in OC tissues during OC progression. METHODS: Bioinformatics methods, GEPIA, and qRT-PCR were used to reveal the level and correlation of LINC01123, hsa-miR-516b-5p, and VEGFA, in OC cell lines. MTT, EdU, TUNEL, and Transwell assays were performed to assess the bioactivity of OC cell. Target sites of LINC01123 and hsa-miR-516b-5p were predicted using Starbase, and the potential linkage points of VEGFA and hsa-miR-516b-5p were predicted using TargetScan. These sites and linkage points were confirmed by double luciferase reporter assay. RESULTS: LINC01123 was upregulated in OC cell lines and LINC01123 silencing suppressed the proliferation and metastasis of OC cells, but promoted cell apoptosis. hsa-miR-516b-5p was linked to LINC01123 and. VEGFA was downstream of hsa-miR-516b-5p. Importantly, silencing of hsa-miR-516b-5p reversed the inhibitory impact of si-LINC01123. The result of hsa-miR-516b-5p inhibitor + si-LINC01123 co-transfection were rescued by si-VEGFA. CONCLUSION: LINC01123 promotes OC development by dampening miR-516b-5p function, and may be a novel target for treating OC.
Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , Neoplasias Ovarianas/genética , Apoptose/genética , Linhagem Celular , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
Damage to the integrity of the preservation coating on the fruit surface will seriously affect the shelf life of the fruit. In this work, the strong hydrogen bond interaction between xanthan gum (XG) and konjac glucomannan (KGM) could form hydrogel films with self-healing properties. The introduction of gallic acid (GA) was beneficial to further improve the antioxidant activity and UV shielding performance of the composite films. Surprisingly, the mechanical properties and gas (water vapor, O2 and CO2) barrier properties of the KGM film crosslinked by XG were significantly improved. The experiment of banana preservation showed that the composite coating could effectively delay the water loss and browning of bananas, slow down the decomposition of pectin and starch in the flesh, and extend the shelf life of bananas for >6 days. Therefore, this multifunctional coating is an excellent packaging material and has a very broad application prospect in the field of food preservation.
Assuntos
Conservação de Alimentos , Mananas , Musa , Polissacarídeos Bacterianos , Mananas/química , Polissacarídeos Bacterianos/química , Musa/química , Conservação de Alimentos/métodos , Antioxidantes/química , Embalagem de Alimentos/métodos , Hidrogéis/químicaRESUMO
Introduction: Although restriction of vertical ocular range of motion is known to be the hallmark of progressive supranuclear palsy (PSP), the maximal amplitude of ocular movement has not been quantitatively assessed despite of accumulating evidences of oculomotor dysfunction in Parkinson's disease (PD). Here, we evaluated the maximal oculomotor range and its response to levodopa in PD, and compare findings to atypical parkinsonism. Methods: We recruited 159 healthy controls (HC) as well as 154 PD, 30 PSP, and 16 multiple system atrophy (MSA) patients. Oculomotor range was assessed using a kinetic perimeter-adapted device for the vertical and horizontal axes (four positions). Parameters were reassessed after levodopa challenge and compared among PD, PSP, and MSA patients. Results: Maximum oculomotor range in PD patients was reduced as compared to HC. Levodopa improved oculomotor range in all directions; corrective effects of upward range positively correlated with improvements in Unified Parkinson's Disease Rating Scale III and bradykinesia sub-scores among PD patients. Although oculomotor range was markedly restricted among PSP and MSA patients, the beneficial effects of levodopa was less pronounced. Reduced oculomotor range of motion was more significant among PSP as compared to PD or MSA patients; MSA patients did not significantly differ from PD patients. The range of upward gaze was optimally sensitive for differentiating among PD, PSP, and MSA patients. Conclusion: Maximum oculomotor range was reduced among PD patients significantly improved by levodopa treatment. Variations in, as well as the positively effects of levodopa on, the range of upward gaze assist diagnostic differentiation among PD, PSP, and MSA patients.
RESUMO
Although the human body needs nickel as a trace element, too much nickel exposure can be hazardous. The effects of nickel on cells include inducing oxidative stress, interfering with DNA damage repair, and altering epigenetic modifications. Glucose metabolism and lipid metabolism are closely related to oxidative stress; however, their role in nickel-induced damage needs further study. In Institute of Cancer Research (ICR) mice, our findings indicated that nickel stress increased the levels of blood lipid indicators (triglycerides, high-density lipoprotein, and cholesterol) by about 50%, blood glucose by more than two-fold, and glycated serum protein by nearly 20%. At the same time, nickel stress increased oxidative stress (malondialdehyde) and inflammation (Interleukin 6) by about 30% in the kidney. Based on next-generation sequencing technology, we detected and analyzed differentially expressed genes in the kidney caused by nickel stress. Bioinformatics analysis and experimental verification showed that nickel inhibited the expression of genes related to lipid metabolism and the AMPK and PPAR signaling pathways. The finding that nickel induces kidney injury and inhibits key genes involved in lipid metabolism and the AMPK and PPAR signaling pathways provides a theoretical basis for a deeper understanding of the mechanism of nickel-induced kidney injury.
RESUMO
Two-dimensional (2D) semiconductor-based vertical-transport field-effect transistors (VTFETs) - in which the current flows perpendicularly to the substrate surface direction - are in the drive to surmount the stringent downscaling constraints faced by the conventional planar FETs. However, low-power device operation with a sub-60 mV/dec subthreshold swing (SS) at room temperature along with an ultra-scaled channel length remains challenging for 2D semiconductor-based VTFETs. Here, we report steep-slope VTFETs that combine a gate-controllable van der Waals heterojunction and a metal-filamentary threshold switch (TS), featuring a vertical transport channel thinner than 5 nm and sub-thermionic turn-on characteristics. The integrated TS-VTFETs were realised with efficient current switching behaviours, exhibiting a current modulation ratio exceeding 1 × 108 and an average sub-60 mV/dec SS over 6 decades of drain current. The proposed TS-VTFETs with excellent area- and energy-efficiency could help to tackle the performance degradation-device downscaling dilemma faced by logic transistor technologies.
RESUMO
BACKGROUND: Endometritis seriously affects the health of women, and it is important to identify new targets for its treatment. OBJECTIVE: This study aimed to explore the role of TNFAIP3 interacting protein 2 (TNIP2) in endometritis through human endometrial epithelial cells (hEECs) stimulated by lipopolysaccharide (LPS). METHODS: hEECs were induced with LPS to build a cellular model of endometritis. Cell growth and apoptosis were detected by cell counting kit-8 and flow cytometry. The TNIP2 mRNA and protein levels were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. The caspase3 activity was calculated using a Caspase3 activity kit. Interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were determined by enzyme-linked-immunosorbent-assay. The reactive oxygen species (ROS), lactate dehydrogenase (LDH), catalase (CAT), and superoxide dismutase (SOD) levels were determined using the corresponding kits. Nuclear factor-kappaB (NF-κB) pathway was determined by western blot assay. RESULTS: TNIP2 was downregulated in the LPS-induced endometritis cell model. Cell viability was reduced, apoptosis was enhanced, and IL-6, IL-1ß, and TNF-α levels increased in LPS-induced hEECs. Additionally, LDH activity and ROS concentration were upregulated, whereas CAT and SOD activities were downregulated in LPS-induced hEECs. These results were reversed by TNIP2 overexpression. Moreover, the results hinted that NF-κB was involved in the effects of TNIP2 on the LPS-induced endometritis cell model. CONCLUSION: TNIP2 alleviated endometritis by inhibiting the NF-κB pathway, suggesting a potential therapeutic target for endometritis.
Assuntos
Endometrite , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Endometrite/induzido quimicamente , Endometrite/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/efeitos adversos , Superóxido Dismutase/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
Remote sensing (RS) scene classification is a challenging task to predict scene categories of RS images. RS images have two main issues: large intraclass variance caused by large resolution variance and confusing information from large geographic covering area. To ease the negative influence from the above two issues. We propose a multigranularity multilevel feature ensemble network (MGML-FENet) to efficiently tackle the RS scene classification task in this article. Specifically, we propose multigranularity multilevel feature fusion branch (MGML-FFB) to extract multigranularity features in different levels of network by channel-separate feature generator (CS-FG). To avoid the interference from confusing information, we propose a multigranularity multilevel feature ensemble module (MGML-FEM), which can provide diverse predictions by full-channel feature generator (FC-FG). Compared to previous methods, our proposed networks have the ability to use structure information and abundant fine-grained features. Furthermore, through the ensemble learning method, our proposed MGML-FENets can obtain more convincing final predictions. Extensive classification experiments on multiple RS datasets (AID, NWPU-RESISC45, UC-Merced, and VGoogle) demonstrate that our proposed networks achieve better performance than previous state-of-the-art (SOTA) networks. The visualization analysis also shows the good interpretability of MGML-FENet.
RESUMO
[This corrects the article DOI: 10.1007/s10616-021-00463-6.].
RESUMO
Ovarian cancer is one of the leading lethal gynecological cancers, causing serious harm to the health of female populations. Growing studies emphasize that lncRNAs serve as significant regulators in the tumorigenesis and evolution of numerous malignancies, including ovarian cancer. Recently, the oncogenic activity of lncRNA ARAP1-AS1 has been justified in a variety of cancers. However, the potential function of ARAP1-AS1 in ovarian cancer development is still unclear. Herein, we firstly revealed the expression profile of ARAP1-AS1 in ovarian cancer. Compared to normal samples and cells, upregulation of ARAP1-AS1 was observed in tissues and cells of ovarian cancer. Therewith, it was disclosed that knockdown of ARAP1-AS1 alleviated the carcinogenicity of ovarian cancer cells. Besides, our findings delineated that ARAP1-AS1 silence inhibited the expression of oncogene PLAGL2. Considering that ARAP1-AS1 was principally expressed in the the cytoplasm of ovarian cancer cells, we speculated that ARAP1-AS1 facilitated ovarian cancer progression via functioning as a ceRNA. Further investigations indicated that ARAP1-AS1 promoted PLAGL2 expression by competitively binding with miR-4735-3p. Of note, ARAP1-AS1 contributed to the malignant phenotypes of ovarian cancer cells through modulation of miR-4735-3p/PLAGL2 axis, revealing ARAP1-AS1 as a promising therapeutic target for ovarian cancer patients.
RESUMO
In this paper, based on the different etching characteristics between GaN and Ga2O3, large-scale and vertically aligned ß-Ga2O3 nanotube (NT) and microtube (MT) arrays were fabricated on the GaN template by a facile and feasible selective etching method. GaN micro-/nanowire arrays were prepared first by inductively coupled plasma (ICP) etching using self-organized or patterning nickel masks as the etching masks, and then the Ga2O3 shell layer converted from GaN was formed by thermal oxidation, resulting in GaN@Ga2O3 micro-/nanowire arrays. After the GaN core of GaN@Ga2O3 micro-/nanowire arrays was removed by ICP etching, hollow Ga2O3 tubes were obtained successfully. The micro-/nanotubes have uniform morphology and controllable size, and the wall thickness can also be controlled with the thermal oxidation conditions. These vertical ß-Ga2O3 micro-/nanotube arrays could be used as new materials for novel optoelectronic devices.