Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867044

RESUMO

Light-emitting diodes (LEDs) based on metal halide perovskites (PeLEDs) with high colour quality and facile solution processing are promising candidates for full-colour and high-definition displays1-4. Despite the great success achieved in green PeLEDs with lead bromide perovskites5, it is still challenging to realize pure-red (620-650 nm) LEDs using iodine-based counterparts, as they are constrained by the low intrinsic bandgap6. Here we report efficient and colour-stable PeLEDs across the entire pure-red region, with a peak external quantum efficiency reaching 28.7% at 638 nm, enabled by incorporating a double-end anchored ligand molecule into pure-iodine perovskites. We demonstrate that a key function of the organic intercalating cation is to stabilize the lead iodine octahedron through coordination with exposed lead ions and enhanced hydrogen bonding with iodine. The molecule synergistically facilitates spectral modulation, promotes charge transfer between perovskite quantum wells and reduces iodine migration under electrical bias. We realize continuously tunable emission wavelengths for iodine-based perovskite films with suppressed energy loss due to the decrease in bond energy of lead iodine in ionic perovskites as the bandgap increases. Importantly, the resultant devices show outstanding spectral stability and a half-lifetime of more than 7,600 min at an initial luminance of 100 cd m-2.

3.
J Am Chem Soc ; 144(11): 4863-4873, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258958

RESUMO

Phase engineering of nanomaterials provides a promising way to explore the phase-dependent physicochemical properties and various applications of nanomaterials. A general bottom-up synthesis method under mild conditions has always been challenging globally for the preparation of the semimetallic phase-transition-metal dichalcogenide (1T'-TMD) monolayers, which are pursued owing to their unique electrochemical property, unavailable in their semiconducting 2H phases. Here, we report the general scalable colloidal synthesis of nanosized 1T'-TMD monolayers, including 1T'-MoS2, 1T'-MoSe2, 1T'-WS2, and 1T'-WSe2, which are revealed to be of high phase purity. Moreover, the surfactant-reliant stacking-hinderable growth mechanism of 1T'-TMD nano-monolayers was unveiled through systematic experiments and theoretical calculations. As a proof-of-concept application, the 1T'-TMD nano-monolayers are used for electrocatalytic hydrogen production in an acidic medium. The 1T'-MoS2 nano-monolayers possess abundant in-plane electrocatalytic active sites and high conductivity, coupled with the contribution of the lattice strain, thus exhibiting excellent performance. Importantly, the catalyst shows impressive endurability in electroactivity. Our developed general scalable strategy could pave the way to extend the synthesis of other broad metastable semimetallic-phase TMDs, which offer great potential to explore novel crystal phase-dependent properties with wide application development for catalysis and beyond.

4.
Small ; 16(12): e1902231, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31769587

RESUMO

For the first time, colloidal gold (Au)-ZnSe hybrid nanorods (NRs) with controlled size and location of Au domains are synthesized and used for hydrogen production by photocatalytic water splitting. Au tips are found to grow on the apices of ZnSe NRs nonepitaxially to form an interface with no preference of orientation between Au(111) and ZnSe(001). Density functional theory calculations reveal that the Au tips on ZnSe hybrid NRs gain enhanced adsorption of H compared to pristine Au, which favors the hydrogen evolution reaction. Photocatalytic tests reveal that the Au tips on ZnSe NRs effectively enhance the photocatalytic performance in hydrogen generation, in which the single Au-tipped ZnSe hybrid NRs show the highest photocatalytic hydrogen production rate of 437.8 µmol h-1 g-1 in comparison with a rate of 51.5 µmol h-1 g-1 for pristine ZnSe NRs. An apparent quantum efficiency of 1.3% for hydrogen evolution reaction for single Au-tipped ZnSe hybrid NRs is obtained, showing the potential application of this type of cadmium (Cd)-free metal-semiconductor hybrid nanoparticles (NPs) in solar hydrogen production. This work opens an avenue toward Cd-free hybrid NP-based photocatalysis for clean fuel production.

5.
Inorg Chem ; 59(1): 484-490, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31829575

RESUMO

The structural and electronic properties of the tin-rich compound NaSn5 were investigated under pressures of up to 10 GPa on the basis of the evolutionary algorithm (EA) technique coupled with first-principles total energy calculations. Upon compression, the known metallic tetragonal P4̅21m phase transforms into a metallic hexagonal P6/mmm phase at 1.85 GPa accompanied by an unusual change in the existing form of Sn atoms. The P6/mmm phase can be interpreted as a quasi-layered sandwich structure with two Sn layers and one sodium layer. The presence of softening phonon modes and the existence of Fermi pockets together with the obvious Fermi surface nesting indicate a strong electron-phonon coupling (EPC) and thus potential superconductivity in the P6/mmm phase. The strong EPC in the P6/mmm phase is mainly attributed to the phonons from Sn1 atoms together with electrons from the Sn1 py and Sn1 pz states. The calculated superconducting critical temperature Tc of the P6/mmm phase is 5.91 K at 1.85 GPa. This study provides a new clue for designing intercalated compounds with superconductivity.

6.
J Chem Phys ; 148(20): 204706, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29865826

RESUMO

Stable potassium silicides in the complete compositional landscape were systematically explored up to 30 GPa using the variable-composition evolutionary structure prediction method. The results show that K4Si, K3Si, K5Si2, K2Si, K3Si2, KSi, KSi2, KSi3, and K8Si46 have their stability fields in the phase diagram. The spatial dimensional diversity of polymerized silicon atoms (0D "isolated" anion, dimer, Si4 group, 1D zigzag chain, 2D layer, and 3D network) under the potassium sublattice was uncovered as silicon content increases. Especially, the 2D layered silicon presents interestingly a variety of shapes, such as the "4 + 6" ring, "4 + 8"ring, and 8-membered ring. K-Si bonding exhibits a mixed covalency and ionicity, while Si-Si bonding is always of covalent character. Semiconductivity or metallicity mainly depends on the form of sublattices and K:Si ratio, which allows us to find more semiconductors in the Si-rich side when closed-shell K cations are encompassed by polymerized Si. The semiconducting silicides present strong absorption in the infrared and visible light range. These findings open up the avenue for experimental synthesis of alkali metal-IVA compounds and potential applications as battery electrode materials or photoelectric materials.

7.
Inorg Chem ; 54(18): 8969-77, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26335828

RESUMO

Using density functional theory (DFT) and a graph theory based approach, we investigated the topology of bond network in CuOH(s) (cuprice) considering only symmetry-distinct structures. In parallel, we conducted the synthesis and X-ray diffraction characterization of the compound and used the combined theoretical-experimental effort to validate the lowest energy structure obtained with DFT. The ground-state structure of CuOH(s) consists of compact trilayers of CuOH connected to each other via hydrogen bonds, where the inner layer of each trilayer is composed entirely of Cu atoms. Each trilayer is a dense fabric made of two interlocked arrays of polymer [CuOH]n chains. This structure corresponds to an antiferroelectric configuration where the dipole moments of CuOH molecules belonging to adjacent arrays are antiparallel and are arranged in the same way as the water molecules in ice-VIII. It is shown that a collective electrostatic interaction is the main driving force for the cation ordering while the local atomic configuration is maintained. These findings and the possibility of synthesizing exfoliated two-dimensional cuprice are important for some technological applications.

8.
Phys Chem Chem Phys ; 17(15): 9730-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25772905

RESUMO

Ru2C has recently been synthesised at high pressure and high temperature, and was assumed to have a structure with space group P3̅m1. However, subsequent theoretical work has revealed that this structure is unstable under ambient conditions, which motivated us to look for the stable structure. In this work, we explore the structures of Ru2C by using an unbiased swarm structure searching algorithm. The structures with R3m and R3̅m symmetries have been found to be lower in energy than the P3̅m1 structure, at the same time being dynamically stable under ambient conditions. These layered structures consist of alternating Ru bilayers and C monolayers in the R3m structure, and alternating Ru tetra-layers and C bilayers in the R3̅m structure. The C layers are more evenly distributed and more covalently bound to the Ru layers in the R3m structure than in the R3̅m structure. Instead, in the R3̅m structure there exists more Ru-Ru metallic bonding, which has a crucial role in diminishing the hardness of this material. Our findings should stimulate further explorations of the structures and properties of the heavy transition metal carbides and nitrides, potentially leading to industrial applications.

9.
J Chem Phys ; 140(9): 091102, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606345

RESUMO

In this work, we have found that the difference between armchair and zigzag ends of carbon nanotubes (CNTs) does not pertain at close study for individual bonds and thus alternative strategies need to be developed to reach the ultimate goals in selective growth. Based on first-principles simulations, the difference between binding strengths for CNTs of different chirality was investigated using hydrogen dissociation energies at their passivated ends. When all H atoms are removed collectively we find the well-known difference: that armchair bonds are much weaker than zigzag ones, which is typically seen for both CNT ends and graphene edges. However, when individual H atoms are removed we find almost no difference in hydrogen dissociation energies, small difference in bond lengths, which by association means small difference in C-C and M-C binding energies. We show convincingly that the difference in binding energy between armchair and zigzag ends is due to a fragment stabilization effect that is only manifested when all (or several neighbouring) bonds are broken. This is because at armchair ends/edges neighbouring dangling bonds can pair-up to form C≡C triple bonds that constitute a considerable stabilization effect compared to the isolated dangling bonds at zigzag ends/edges. Consequently, in many processes, e.g., catalytic growth where bonds are normally created/broken sequentially, not collectively, the difference between armchair and zigzag ends/edges cannot be used to discriminate growth of one type over the other to achieve chiral selective growth. Strategies are discussed to realize chirality selective growth in the light of the results presented, including addition of C2-fragments to favor armchair tubes.

10.
Nat Commun ; 13(1): 3770, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773267

RESUMO

Noble gas isotopes in plumes require a source of primitive volatiles largely isolated in the Earth for 4.5 Gyrs. Among the proposed reservoirs, the core is gaining interest in the absence of robust geochemical and geophysical evidence for a mantle source. This is supported by partitioning data showing that sufficient He and Ne could have been incorporated into the core to source plumes today. Here we perform ab initio calculations on the partitioning of He, Ne, Ar, Kr and Xe between liquid iron and silicate melt under core forming conditions. For He our results are consistent with previous studies allowing for substantial amounts of He in the core. In contrast, the partition coefficient for Ne is three orders of magnitude lower than He. This very low partition coefficient would result in a 3He/22Ne ratio of ~103 in the core, far higher than observed in ocean island basalts (OIBs). We conclude that the core is not the source of noble gases in OIBs.

11.
Adv Sci (Weinh) ; 9(21): e2200959, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618484

RESUMO

Indium phosphide (InP) based quantum dots (QDs) have been known as an ideal alternative to heavy metals including QDs light emitters, such as cadmium selenium (CdSe) QDs, and show great promise in the next-generation solid-state lighting and displays. However, the electroluminescence performance of green InP QDs is still inferior to their red counterparts, due to the higher density of surface defects and the wider particle size distribution. Here, a quasi-shell-growth strategy for the growth of highly luminescent green InP/ZnSe/ZnS QDs is reported, in which the zinc and selenium monomers are added at the initial nucleation of InP stage to adsorb on the surface of InP cores that create a quasi-ZnSe shell rather than a bulk ZnSe shell. The quasi-ZnSe shell reduces the surface defects of InP core by passivating In-terminated vacancies, and suppresses the Ostwald ripening of InP core at high temperatures, leading to a photoluminescence quantum yield of 91% with a narrow emission linewidth of 36 nm for the synthesized InP/ZnSe/ZnS QDs. Consequently, the light-emitting diodes based on the green QDs realize a maximum luminance of 15606 cd m-2 , a peak external quantum efficiency of 10.6%, and a long half lifetime of > 5000 h.

12.
Sci Bull (Beijing) ; 67(5): 529-536, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546174

RESUMO

Emerging quantum dots (QDs) based light-emitting field-effect transistors (QLEFETs) could generate light emission with high color purity and provide facile route to tune optoelectronic properties at a low fabrication cost. Considerable efforts have been devoted to designing device structure and to understanding the underlying physics, yet the overall performance of QLEFETs remains low due to the charge/exciton loss at the interface and the large band offset of a QD layer with respect to the adjacent carrier transport layers. Here, we report highly efficient QLEFETs with an external quantum efficiency (EQE) of over 20% by employing a dielectric-QDs-dielectric (DQD) sandwich structure. Such DQD structure is used to control the carrier behavior by modulating energy band alignment, thus shifting the exciton recombination zone into the emissive layer. Also, enhanced radiative recombination is achieved by preventing the exciton loss due to presence of surface traps and the luminescence quenching induced by interfacial charge transfer. The DQD sandwiched design presents a new concept to improve the electroluminescence performance of QLEFETs, which can be transferred to other material systems and hence can facilitate exploitation of QDs in a new type of optoelectronic devices.

13.
Nat Commun ; 12(1): 1246, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623029

RESUMO

Quasi-two-dimensional (quasi-2D) Ruddlesden-Popper (RP) perovskites such as BA2Csn-1PbnBr3n+1 (BA = butylammonium, n > 1) are promising emitters, but their electroluminescence performance is limited by a severe non-radiative recombination during the energy transfer process. Here, we make use of methanesulfonate (MeS) that can interact with the spacer BA cations via strong hydrogen bonding interaction to reconstruct the quasi-2D perovskite structure, which increases the energy acceptor-to-donor ratio and enhances the energy transfer in perovskite films, thus improving the light emission efficiency. MeS additives also lower the defect density in RP perovskites, which is due to the elimination of uncoordinated Pb2+ by the electron-rich Lewis base MeS and the weakened adsorbate blocking effect. As a result, green light-emitting diodes fabricated using these quasi-2D RP perovskite films reach current efficiency of 63 cd A-1 and 20.5% external quantum efficiency, which are the best reported performance for devices based on quasi-2D perovskites so far.

14.
J Phys Chem Lett ; 11(13): 4990-4997, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498513

RESUMO

Polar surfaces of ionic crystals are of growing technological importance, with implications for the efficiency of photocatalysts, gas sensors, and electronic devices. The creation of ionic nanocrystals with high percentages of polar surfaces is an option for improving their efficiency in the aforementioned applications but is hard to accomplish because they are less thermodynamically stable and prone to vanish during the growth process. Herein, we develop a strategy that is capable of producing polar surface-dominated II-VI semiconductor nanocrystals, including ZnS and CdS, from copper sulfide hexagonal nanoplates through cation exchange reactions. The obtained wurtzite ZnS hexagonal nanoplates have dominant {002} polar surfaces, occupying up to 97.8% of all surfaces. Density functional theory calculations reveal the polar surfaces can be stabilized by a charge transfer of 0.25 eV/formula from the anion-terminated surface to the cation-terminated surface, which also explains the presence of polar surfaces in the initial Cu1.75S hexagonal nanoplates with cation deficiency prior to cation exchange reactions. Experimental results showed that the HER activity could be boosted by the surface polarization of polar surface-dominated ZnS hexagonal nanoplates. We anticipate this strategy is general and could be used with other systems to prepare nanocrystals with dominant polar surfaces. Furthermore, the availability of colloidal semiconductor nanocrystals with dominant polar surfaces produced through this strategy opens a new avenue for improving their efficiency in catalysis, photocatalysis, gas sensing, and other applications.

15.
ACS Nano ; 14(12): 17505-17514, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33237741

RESUMO

Integrating carbon nitride with graphene into a lateral heterojunction would avoid energy loss within the interlaminar space region on conventional composites. To date, its synthesis process is limited to the bottom-up method which lacks the targeting and homogeneity. Herein, we proposed a hydrogen-initiated chemical epitaxial growth strategy at a relatively low temperature for the fabrication of graphene/carbon nitride in-plane heterostructure. Theoretical and experimental analysis proved that methane via in situ generation from the hydrogenated decomposition of carbon nitride triggered the graphene growth along the active sites at the edges of confined spaces. With the enhanced electrical field from the deposited graphene (0.5%), the performances on selective photo-oxidation and photocatalytic water splitting were promoted by 5.5 and 3.7 times, respectively. Meanwhile, a 7720 µmol/h/g(graphene) hydrogen evolution rate was acquired without any cocatalysts. This study provides an top-down strategy to synthesize in-plane catalyst for the utilization of solar energy.

16.
Adv Mater ; 31(49): e1905540, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31631407

RESUMO

Molecular surfactants are widely used to control low-dimensional morphologies, including 2D nanomaterials in colloidal chemical synthesis, but it is still highly challenging to accurately control single-layer growth for 2D materials. A scalable stacking-hinderable strategy to not only enable exclusive single-layer growth mode for transition metal dichalcogenides (TMDs) selectively sandwiched by surfactant molecules but also retain sandwiched single-layer TMDs' photoredox activities is developed. The single-layer growth mechanism is well explained by theoretical calculation. Three types of single-layer TMDs, including MoS2 , WS2 , and ReS2 , are successfully synthesized and demonstrated in solar H2 fuel production from hydrogen-stored liquid carrier-methanol. Such H2 fuel production from single-layer MoS2 nanosheets is COx -free and reliably workable under room temperature and normal pressure with the generation rate reaching ≈617 µmole g-1 h-1 and excellent photoredox endurability. This strategy opens up the feasible avenue to develop methanol-storable solar H2 fuel with facile chemical rebonding actualized by 2D single-layer photocatalysts.

17.
Adv Mater ; 30(39): e1803351, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30059172

RESUMO

Quasi-1D cadmium chalcogenide quantum rods (QRs) are benchmark semiconductor materials that are combined with noble metals to constitute QR heterostructures for efficient photocatalysis. However, the high toxicity of cadmium and cost of noble metals are the main obstacles to their widespread use. Herein, a facile colloidal synthetic approach is reported that leads to the spontaneous formation of cadmium-free alloyed ZnSx Se1-x QRs from polydisperse ZnSe nanowires by alkylthiol etching. The obtained non-noble-metal ZnSx Se1-x QRs can not only be directly adopted as efficient photocatalysts for water oxidation, showing a striking oxygen evolution capability of 3000 µmol g-1 h-1 , but also be utilized to prepare QR-sensitized TiO2 photoanodes which present enhanced photo-electrochemical (PEC) activity. Density functional theory (DFT) simulations reveal that alloyed ZnSx Se1-x QRs have highly active Zn sites on the (100) surface and reduced energy barrier for oxygen evolution, which in turn, are beneficial to their outstanding photocatalytic and PEC activities.

18.
Dalton Trans ; 46(2): 529-538, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27966719

RESUMO

The electronic structure and chemical bonding of Cu(i) compounds with O and/or H are investigated using ab initio calculations based on density functional theory. A hybrid functional PBE0 is employed, which accurately reproduces an experimental band gap of cuprite Cu2O. Cuprous hydroxide CuOH (cuprice) is found to be an indirect band gap semiconductor. Depending on the bond network configuration of CuOH, its band gap is found to vary between 2.73 eV and 3.03 eV. The presence of hydrogen in CuOH has little effect on the character of Cu-O bonds, as compared to Cu2O, but lowers the energy levels of the occupied states upon O-H bond formation. The bonding charge density and electron localization function calculations reveal that a closed-shell Cu-Cu interaction takes place in Cu2O and CuOH between the neighbouring Cu cations belonging to different bond networks. Besides, three structures of cuprous hydride CuH are investigated. We find that the halite structure of CuH can be stabilized at high pressure (above 32 GPa) while wurtzite is the most stable structure of CuH at ambient pressure. The H-H interaction contributes to the dynamical stabilization of the halite structure. The wurtzite and sphalerite structures of CuH are predicted to be semiconducting with small band gaps, while the halite structure is calculated to be metallic.

19.
Nanoscale ; 8(34): 15753-62, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27528499

RESUMO

The existence of BiXenes, a new family of 2D monolayers, is hereby predicted. Theoretically, BiXenes have 1H symmetry (P6[combining macron]m2) and can be formed from the 4d/5d binary carbides. As the name suggests, they are close relatives of MXenes, which instead have 1T symmetry (P3[combining macron]m1). The newly found BiXenes, as well as some new MXenes, are shown to have formation energies close to that of germanene, which suggests that these materials should be possible to be synthesised. Among them, we illustrate that 1H-Tc2C and 1T-Mo2C are dynamically stable at 0 K, while 1H-Mo2C, 1T-Tc2C, 1H-Os2C, and 1T-Rh2C are likely to be stabilised via strain or temperature. In addition, the nature of the chemical bonding is analysed, emphasizing that the covalency between the transition metal ions and carbon is much stronger in BiXenes than in MXenes. The emergence of BiXenes can not only open up a new era of conducting 2D monolayers, but also provide good candidates for carrier materials aimed at energy storage and spintronic devices that have already been unveiled in MXenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA