Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6084-6091, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717110

RESUMO

Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.

2.
Chaos ; 33(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676112

RESUMO

The computational investigation of Fermi, Pasta, Ulam, and Tsingou (FPUT) of arrays of nonlinearly coupled oscillators has led to a wealth of studies in nonlinear dynamics. Most studies of oscillator arrays have considered homogeneous oscillators, even though there are inherent heterogeneities between individual oscillators in real-world arrays. Well-known FPUT phenomena, such as energy recurrence, can break down in such heterogeneous systems. In this paper, we present an approach-the use of structured heterogeneities-to recover recurrence in FPUT systems in the presence of oscillator heterogeneities. We examine oscillator variabilities in FPUT systems with cubic nonlinearities, and we demonstrate that centrosymmetry in oscillator arrays may be an important source of recurrence.

3.
Nano Lett ; 22(2): 658-664, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34994571

RESUMO

Spin-polarized charge endows conventional lasers with not only new functionalities but also reduced lasing thresholds thanks to the lifting of spin degeneracy. II-VI and III-V semiconductors have been extensively investigated as spin laser gain mediums; however, the degree of polarization is limited by the light hole and heavy hole degeneracy. Herein, we evaluate the potential of CsPbBr3 nanocrystals─ones that are featured with low band-edge degeneracy and therefore a high degree of polarization as a result of inverted band structure and large spin-orbit coupling─as a gain medium for spin lasers. Our experiment and numerical modeling results reveal that, within the spin relaxation lifetime, the optical gain threshold can be depressed by polarizing the charge using circularly polarized photoexcitation. However, prolonging the spin relaxation lifetime is required to realize a spin laser.

4.
Nat Commun ; 13(1): 3339, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680921

RESUMO

Hierarchically structured chiral luminescent materials hold promise for achieving efficient circularly polarized luminescence. However, a feasible chemical route to fabricate hierarchically structured chiral luminescent polycrystals is still elusive because of their complex structures and complicated formation process. We here report a biomimetic non-classical crystallization (BNCC) strategy for preparing efficient hierarchically structured chiral luminescent polycrystals using well-designed highly luminescent homochiral copper(I)-iodide hybrid clusters as basic units for non-classical crystallization. By monitoring the crystallization process, we unravel the BNCC mechanism, which involves crystal nucleation, nanoparticles aggregation, oriented attachment, and mesoscopic transformation processes. We finally obtain the circularly polarized phosphors with both high luminescent efficiency of 32% and high luminescent dissymmetry factor of 1.5 × 10-2, achieving the demonstration of a circularly polarized phosphor converted light emitting diode with a polarization degree of 1.84% at room temperature. Our designed BNCC strategy provides a simple, reliable, and large-scale synthetic route for preparing bright circularly polarized phosphors.


Assuntos
Biomimética , Medições Luminescentes , Cristalização , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA