Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751329

RESUMO

Phaeocystis globosa has become one of the primary causes of harmful algal bloom in coastal areas of southern China in recent years, and it poses a serious threat to the marine environment and other activities depending upon on it (e.g., aquaculture, cooling system of power plants), especially in the Beibu Gulf. We found colonies of P. globosa collected form Guangxi (China) were much larger than those obtained from Shantou cultured in lab. To better understand the causes of giant colonies formation, colonial cells collected from P. globosa GX strain (GX-C) and ST strain (ST-C) were separated by filtration. Morphological observations, phylogenetic analyses, rapid light-response curves, fatty acid profiling and transcriptome analyses of two type cells were performed in the laboratory. Although no differences in morphology and 18S rRNA sequences of these cells were observed, the colonies of GX strain (4.7 mm) are 30 times larger than those produced by the ST strain (300 µm). The rapid light-response curve of GX-C was greater than that of ST-C, consistent with the upregulated photosynthetic system, while the fatty acid content of GX-C was lower than that of ST-C, also consistent with the downregulated synthesis of fatty acids and the upregulated degradation of fatty acids. In summary, the increased energy generated by GX-C is allocated to promote the secretion of extracellular polysaccharides for colony formation. We performed a physiological and molecular assessment of the differences between the GX-C and ST-C strains, providing insights into the mechanisms of giant colonies formation in P. globosa.


Assuntos
Haptófitas/classificação , Proliferação Nociva de Algas/fisiologia , Redes e Vias Metabólicas/genética , Fotossíntese/genética , Transcriptoma , China , Ácidos Graxos/biossíntese , Ácidos Graxos/classificação , Haptófitas/genética , Haptófitas/metabolismo , Haptófitas/efeitos da radiação , Proliferação Nociva de Algas/efeitos da radiação , Luz , Transdução de Sinal Luminoso , Redes e Vias Metabólicas/efeitos da radiação , Oceano Pacífico , Fotossíntese/efeitos da radiação , Filogenia , Polissacarídeos/biossíntese , Polissacarídeos/classificação , RNA Ribossômico 18S/genética
2.
Environ Pollut ; 320: 121008, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608724

RESUMO

Simultaneous ocean warming and acidification will alter marine ecosystem structure and directly affect marine organisms. The alga Phaeocystis globosa commonly causes harmful algal blooms in coastal areas of eastern China. P. globosa often outcompetes other species due to its heterotypic life cycle, primarily including colonies and various types of solitary cells. However, little is known about the adaptive response of P. globosa to ocean warming and acidification. This study aimed to reveal the global molecular regulatory networks implicated in the response of P. globosa to simultaneous warming and acidification. After exposure to warming and acidification, the phosphatidylinositol (PI) and mitogen-activated protein kinase (MAPK) signaling pathways of P. globosa were activated to regulate other molecular pathways in the cell, while the light harvesting complex (LHC) genes were downregulated to decrease photosynthesis. Exposure to warming and acidification also altered the intracellular energy flow, with more energy allocated to the TCA cycle rather than to the biosynthesis of fatty acids and hemolytic substances. The upregulation of genes associated with glycosaminoglycan (GAG) degradation prevented the accumulation of polysaccharides, which led to a reduction in colony formation. Finally, the upregulation of the Mre11 and Rad50 genes in response to warming and acidification implied an increase in meiosis, which may be used by P. globosa to increase the number of solitary cells. The increase in genetic diversity through sexual reproduction may be a strategy of P. globosa that supports rapid response to complex environments. Thus, the life cycle of P. globosa underwent a transition from colonies to solitary cells in response to warming and acidification, suggesting that this species may be able to rapidly adapt to future climate changes through life cycle transitions.


Assuntos
Haptófitas , Haptófitas/metabolismo , Ecossistema , Proliferação Nociva de Algas , Concentração de Íons de Hidrogênio , Oceanos e Mares
3.
Harmful Algae ; 127: 102477, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544677

RESUMO

Phaeocystis globosa blooms frequently occur in the Southeast China Sea and cause significant negative impacts on coastal ecology and mariculture. The P. globosa blooms in southeastern China are very different compared to those of European strains, suggesting that differences may exist in their morphological, phylogenetic, and life history traits. In this study, seven strains of P. globosa isolated from Southeast China Sea that were typical strains of algal blooms in the region, in addition to one strain from the Gulf of Mexico (CCMP629), were comprehensively evaluated to better understand region-specific differences of the species. Significant differences were not observed in the internal cell structures and other characteristics compared to those of European strains, while differences in cell surface structures were apparent. For example, small and large flagellated Chinese P. globosa cells exhibited two flagella with slightly unequal lengths and a short haptonema, the surfaces of small flagellated cells were not covered by scales, and colony cell diameters were smaller. 18S rRNA sequence phylogenetic analysis also revealed that P. globosa comprised a species complex with two ecotypes (warm- and cold-water types), of which the strains from the southeastern coast of China and CCMP629 belonged to the warm-water type. In addition, the life cycles and variable modes of P. globosa colony formation were evaluated in detail. The algal bloom may be due to the rapid colonies formation by budding and colony fragments. These results provide new insights into the life cycle of P. globosa and highlight the differences in morphological and phylogenetic relationships between strains from the southeast coast of China and those from coastal European regions.


Assuntos
Haptófitas , Animais , Filogenia , Estágios do Ciclo de Vida , Água , China
4.
Mar Pollut Bull ; 185(Pt A): 114228, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274557

RESUMO

Ipomoea cairica (L.) Sweet is an invasive plant that cause serious invasion and damage in South China. Phaeocystis globosa is a common harmful algal bloom species on the southeast coast of China. Both species cause great environmental disturbances and serious economic damage to the localregion. This study explored the potential inhibitory effects of I. cairica leaf extracts on P. globosa. The results showed that solitary cells growth was inhibited at extract concentrations higher than 0.25 % (v/v). Although the colony diameter did not change, and the colony number increased rapidly in the first 36 h, we found that cells in the colonies had been damaged using scanning electron microscope and SYTOX-Green staining at 48 h. In addition, the rapid light-response curve of cells treated with extracts decreased, along with down-regulation of photosynthesis-related genes (psbA, psbD, and rbcL), suggesting damage to the photosynthetic system. Finally, the activities of antioxidant enzymes including superoxide dismutase, peroxidase, and catalase increased with increasing treatment time, indicating that cells activate antioxidant enzyme defense systems to alleviate the production of reactive oxygen species (ROS). Increased ROS levels disrupt cell membranes, alter cellular ultrastructures, and ultimately lead to cell death. This study not only achieved the reuse of invasive plant resources, but also demonstrated that I. cairica leaf extract has potential value as an algaecide.


Assuntos
Haptófitas , Ipomoea , Ipomoea/química , Ipomoea/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação Nociva de Algas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA