RESUMO
Although aromatic rings are common elements in pharmaceutically active compounds, the presence of these motifs brings several liabilities with respect to the developability of a drug1. Nonoptimal potency, metabolic stability, solubility and lipophilicity in pharmaceutical compounds can be improved by replacing aromatic rings with non-aromatic isosteric motifs2. Moreover, whereas aromatic rings are planar and lack three-dimensionality, the binding pockets of most pharmaceutical targets are chiral. Thus, the stereochemical configuration of the isosteric replacements may offer an added opportunity to improve the affinity of derived ligands for target receptors. A notable impediment to this approach is the lack of simple and scalable catalytic enantioselective syntheses of candidate isosteres from readily available precursors. Here we present a previously unknown palladium-catalysed reaction that converts hydrocarbon-derived precursors to chiral boron-containing nortricyclanes and we show that the shape of these nortricyclanes makes them plausible isosteres for meta disubstituted aromatic rings. With chiral catalysts, the Pd-catalysed reaction can be accomplished in an enantioselective fashion and subsequent transformation of the boron group provides access to a broad array of structures. We also show that the incorporation of nortricyclanes into pharmaceutical motifs can result in improved biophysical properties along with stereochemistry-dependent activity. We anticipate that these features, coupled with the simple, inexpensive synthesis of the functionalized nortricyclane scaffold, will render this platform a useful foundation for the assembly of new biologically active agents.
RESUMO
BACKGROUND: The effects of the glycoprotein IIb/IIIa receptor inhibitor tirofiban in patients with acute ischemic stroke but who have no evidence of complete occlusion of large or medium-sized vessels have not been extensively studied. METHODS: In a multicenter trial in China, we enrolled patients with ischemic stroke without occlusion of large or medium-sized vessels and with a National Institutes of Health Stroke Scale score of 5 or more and at least one moderately to severely weak limb. Eligible patients had any of four clinical presentations: ineligible for thrombolysis or thrombectomy and within 24 hours after the patient was last known to be well; progression of stroke symptoms 24 to 96 hours after onset; early neurologic deterioration after thrombolysis; or thrombolysis with no improvement at 4 to 24 hours. Patients were assigned to receive intravenous tirofiban (plus oral placebo) or oral aspirin (100 mg per day, plus intravenous placebo) for 2 days; all patients then received oral aspirin until day 90. The primary efficacy end point was an excellent outcome, defined as a score of 0 or 1 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) at 90 days. Secondary end points included functional independence at 90 days and a quality-of-life score. The primary safety end points were death and symptomatic intracranial hemorrhage. RESULTS: A total of 606 patients were assigned to the tirofiban group and 571 to the aspirin group. Most patients had small infarctions that were presumed to be atherosclerotic. The percentage of patients with a score of 0 or 1 on the modified Rankin scale at 90 days was 29.1% with tirofiban and 22.2% with aspirin (adjusted risk ratio, 1.26; 95% confidence interval, 1.04 to 1.53, P = 0.02). Results for secondary end points were generally not consistent with the results of the primary analysis. Mortality was similar in the two groups. The incidence of symptomatic intracranial hemorrhage was 1.0% in the tirofiban group and 0% in the aspirin group. CONCLUSIONS: In this trial involving heterogeneous groups of patients with stroke of recent onset or progression of stroke symptoms and nonoccluded large and medium-sized cerebral vessels, intravenous tirofiban was associated with a greater likelihood of an excellent outcome than low-dose aspirin. Incidences of intracranial hemorrhages were low but slightly higher with tirofiban. (Funded by the National Natural Science Foundation of China; RESCUE BT2 Chinese Clinical Trial Registry number, ChiCTR2000029502.).
Assuntos
Fibrinolíticos , AVC Isquêmico , Tirofibana , Humanos , Aspirina/efeitos adversos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia , Fibrinolíticos/efeitos adversos , Fibrinolíticos/uso terapêutico , Hemorragias Intracranianas/induzido quimicamente , AVC Isquêmico/diagnóstico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/etiologia , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/uso terapêutico , Tirofibana/efeitos adversos , Tirofibana/uso terapêutico , Resultado do Tratamento , Doenças Arteriais Cerebrais/tratamento farmacológico , Doenças Arteriais Cerebrais/etiologiaRESUMO
Excessive proinflammatory cytokine release induced by pyroptosis plays a vital role in intestinal mucosal inflammation in ulcerative colitis (UC). Several pyroptosis-related factors are regulated by the centrosome. Pericentriolar material 1 (PCM1) is a primary component of centriolar satellites that is present as cytoplasmic granules around the centrosome. Our previous study revealed that PCM1 was highly expressed in UC patients, but the role of PCM1 in UC remains unknown. This study aimed to elucidate the role of PCM1 in the development of UC, especially the mechanism in pyroptosis process of UC. Clinical mucosal sample and dextran sulfate sodium (DSS)-induced colitis mouse were used to reveal the association between PCM1 and intestinal inflammation. Intestinal epithelial cell-specific PCM1-knockout mice were constructed to determine the role of PCM1 in colitis. Finally, PCM1 RNA interference and overexpression assays in THP1 cells were employed to study the molecular mechanisms of PCM1 in inflammatory responses and pyroptosis. We found that PCM1 expression was upregulated in the colonic mucosa of UC patients and positively correlated with inflammatory indicators. PCM1 expression was elevated in DSS-induced colitis mice and was reduced after methylprednisolone treatment. In the DSS colitis model, intestinal-specific PCM1-knockout mice exhibited milder intestinal inflammation and lower pyroptosis levels than wild-type mice. In cell level, PCM1 exerted a proinflammatory effect by activating the NLRP3 inflammasome and triggering subsequent gasdermin D-mediated pyroptosis to release IL-1ß and IL-18. In conclusion, PCM1 mediates activation of the NLRP3 inflammasome and gasdermin D-dependent pyroptosis, ultimately accelerating intestinal inflammation in UC. These findings revealed a previously unknown role of PCM1 in initiating intestinal mucosal inflammation and pyroptosis in UC, and this factor is expected to be a regulator in the complex inflammatory network of UC.
Assuntos
Colite Ulcerativa , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas de Ligação a Fosfato , Piroptose , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose/fisiologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Camundongos , Humanos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Feminino , Sulfato de Dextrana/toxicidade , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , GasderminasRESUMO
The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.
Assuntos
Doença de Marek , Animais , Alelos , Aminoácidos , Membrana Celular , Galinhas , Doença de Marek/genética , Antígenos de Histocompatibilidade Classe I/imunologiaRESUMO
Heading is one of the most important agronomic traits for Chinese cabbage crops. During the heading stage, leaf axial growth is an essential process. In the past, most genes predicted to be involved in the heading process have been based on leaf development studies in Arabidopsis. No genes that control leaf axial growth have been mapped and cloned via forward genetics in Chinese cabbage. In this study, we characterize the inward curling mutant ic1 in Brassica rapa ssp. pekinensis and identify a mutation in the OCTOPUS (BrOPS) gene by map-based cloning. OPS is involved in phloem differentiation in Arabidopsis, a functionalization of regulating leaf curvature that is differentiated in Chinese cabbage. In the presence of brassinosteroid (BR) at the early heading stage in ic1, the mutation of BrOPS fails to sequester brassinosteroid insensitive 2 (BrBIN2) from the nucleus, allowing BrBIN2 to phosphorylate and inactivate BrBES1, which in turn relieves the repression of BrAS1 and results in leaf inward curving. Taken together, the results of our findings indicate that BrOPS positively regulates BR signaling by antagonizing BrBIN2 to promote leaf epinastic growth at the early heading stage in Chinese cabbage.
Assuntos
Brassica , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassica/genética , Brassica/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas Quinases/genéticaRESUMO
The myometrium, composed of the inner circular muscle (CM) and outer longitudinal muscle (LM), is crucial in establishing and maintaining early pregnancy. However, the molecular mechanisms involved are not well understood. In this study, we identified the transcriptomic features of the CM and LM collected from the mesometrial (M) and anti-mesometrial (AM) sides of the pig uterus on day 18 of pregnancy during the placentation initiation phase. Some genes in the cellular zinc ion level regulatory pathways (MT-1A, MT-1D, MT-2B, SLC30A2, and SLC39A2) were spatially and highly enriched in uterine CM at the mesometrial side. In addition, the histone modification profiles of H3K27ac and H3K4me3 in uterine CM and LM collected from the mesometrial side were characterized. Genomic regions associated with the expression of genes regulating the cellular zinc ion level were detected. Moreover, six highly linked variants in the H3K27ac-enriched region of the pig SLC30A2 gene were identified and found to be significantly associated with the total number born at the second parity (P < 0.05). In conclusion, the genes in the pathways of cellular zinc homeostasis and their regulatory elements identified have implications for pig reproduction trait improvement and warrant further investigations.
Assuntos
Epigenômica , Miométrio , Gravidez , Feminino , Suínos , Animais , Miométrio/metabolismo , Útero/metabolismo , Homeostase , Zinco/metabolismoRESUMO
Alkyllithium-activated organoboronic esters are found to undergo stereospecific phosphination with copper chloride and chlorophosphines. They also react with thiolsulfonate electrophiles under copper catalysis. These reactions enable stereospecific phosphination and thiolation of organoboronic esters, which are further applied in preparation of chiral ligands and biologically active molecules.
RESUMO
All-weather operation is considered an ultimate pursuit of the practical development of sodium-ion batteries (SIBs), however, blocked by a lack of suitable electrolytes at present. Herein, by introducing synergistic manipulation mechanisms driven by phosphorus/silicon involvement, the compact electrode/electrolyte interphases are endowed with improved interfacial Na-ion transport kinetics and desirable structural/thermal stability. Therefore, the modified carbonate-based electrolyte successfully enables all-weather adaptability for long-term operation over a wide temperature range. As a verification, the half-cells using the designed electrolyte operate stably over a temperature range of -25 to 75 °C, accompanied by a capacity retention rate exceeding 70% even after 1700 cycles at 60 °C. More importantly, the full cells assembled with Na3V2(PO4)2O2F cathode and hard carbon anode also have excellent cycling stability, exceeding 500 and 1000 cycles at -25 to 50 °C and superb temperature adaptability during all-weather dynamic testing with continuous temperature change. In short, this work proposes an advanced interfacial regulation strategy targeted at the all-climate SIB operation, which is of good practicability and reference significance.
RESUMO
Since sodium-ion batteries (SIBs) have become increasingly commercialized in recent years, Na3V2(PO4)2O2F (NVPOF) offers promising economic potential as a cathode for SIBs because of its high operating voltage and energy density. According to reports, NVPOF performs poorly in normal commercial poly(vinylidene fluoride) (PVDF) binder systems and performs best in combination with aqueous binder. Although in line with the concept of green and sustainable development for future electrode preparation, aqueous binders are challenging to achieve high active material loadings at the electrode level, and their relatively high surface tension tends to cause the active material on the electrode sheet to crack or even peel off from the collector. Herein, a cross-linkable and easily commercial hybrid binder constructed by intermolecular hydrogen bonding (named HPP) has been developed and utilized in an NVPOF system, which enables the generation of a stable cathode electrolyte interphase on the surface of active materials. According to theoretical simulations, the HPP binder enhances electronic/ionic conductivity, which greatly lowers the energy barrier for Na+ migration. Additionally, the strong hydrogen-bond interactions between the HPP binder and NVPOF effectively prevent electrolyte corrosion and transition-metal dissolution, lessen the lattice volume effect, and ensure structural stability during cycling. The HPP-based NVPOF offers considerably improved rate capability and cycling performance, benefiting from these benefits. This comprehensive binder can be extended to the development of next-generation energy storage technologies with superior performance.
RESUMO
BACKGROUND: The impact of sidedness on survival of later-line treatment in patients with metastatic colorectal cancer (mCRC) is undetermined. This study aimed to investigate the association between sidedness and survival among chemotherapy refractory patients with mCRC treated with trifluridine/tipiracil (TAS-102) or regorafenib or both. PATIENTS AND METHODS: Patients with mCRC treated with TAS-102 or regorafenib between 2015 and 2020 was retrospectively collected. Patients were stratified into TAS-102 first and regorafenib first, then subdivided into TAS-102 followed by regorafenib (T-R) and regorafenib followed by TAS-102 (R-T) groups. The oncologic outcomes were presented with time-to-treatment failure (TTF) and overall survival (OS). RESULTS: After matching, 376 TAS-102 patients and 376 regorafenib patients were included for outcomes comparison. TTF had insignificant differences while OS was significantly different between TAS-102 and regorafenib groups. Median TTF and OS were 1.9 months versus 2.0 months (Pâ =â .701) and 9.1 months versus 7.0 months (Pâ =â .008) in TAS-102 and regorafenib, respectively. The OS benefits were consistent regardless primary tumor location. Subgroup analysis with 174 T-R patients and 174 R-T patients was investigated for treatment sequences. TTF and OS had significant differences in both groups. Median TTF and OS were 8.5 months versus 6.3 months (Pâ =â .001) and 14.4 months versus 12.6 months (Pâ =â .035) in T-R and R-T groups, respectively. The TTF and OS benefits were persisted regardless primary tumor location. CONCLUSION: TAS-102 first provided a better survival benefit in chemotherapy refractory patients with mCRC across all sidedness. Further prospective studies are warranted to validate our conclusions.
RESUMO
Endocervical adenocarcinoma (ECA) is reported increasingly often in young women, and this aggressive disease lacks effective methods of targeted therapy. Since mismatch repair deficiency (dMMR) is an important biomarker for predicting response to immune checkpoint inhibitors, it is important to investigate the clinicopathological features and immune microenvironment of dMMR ECAs. We assessed 617 ECAs from representative tissue microarray sections, gathered clinicopathologic information, reviewed histological characteristics, and performed immunohistochemical staining for MMR, programmed cell death 1 (PD-L1), and other immune markers. Of 617 ECA samples, 20 (3.2%) cases had dMMR. Among them, loss of MMR-related proteins expression was observed in 17/562 (3.0%) human papilloma virus-associated (HPVA) adenocarcinoma and 3/55 (5.5%) non-HPV-associated (NHPVA) adenocarcinoma. In NHPVA cohort, dMMR status was observed in 3 (3/14, 15.0%) patients with clear cells. dMMR ECAs had a higher tendency to have a family history of cancer, larger tumor size, p16 negative, HPV E6/E7 mRNA in situ hybridization (HPV E6/E7 RNAscope) negative, and lower ki-67 index. Among the morphological variables evaluated, poor differentiation, necrosis, stromal tumor-infiltrating lymphocytes, peritumoral lymphocytes, and lymphoid follicles were easily recognized in the dMMR ECAs. In addition, dMMR ECAs had higher CD3+, CD8+, CD38+, CD68+ and PD-1+ immune cells. A relatively high prevalence of PD-L1 expression was observed in dMMR ECAs. dMMR ECAs were significantly more likely to present with a tumor-infiltrating lymphocytes -high/PD-L1-positive status. In conclusion, dMMR ECAs have some specific morphological features and a critical impact on the immune microenvironment, which may provide insights into improving responses to immunotherapy-included comprehensive treatment for ECAs in the future.
Assuntos
Adenocarcinoma , Reparo de Erro de Pareamento de DNA , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Adulto , Pessoa de Meia-Idade , Adenocarcinoma/imunologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/virologia , Microambiente Tumoral/imunologia , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Adulto Jovem , Neoplasias Encefálicas , Síndromes Neoplásicas Hereditárias , Neoplasias ColorretaisRESUMO
BACKGROUND: Currently, pathophysiological mechanisms of post-acute sequelae of coronavirus disease-19-cardiovascular syndrome (PASC-CVS) remain unknown. METHODS AND RESULTS: Patients with PASC-CVS exhibited significantly higher circulating levels of severe acute respiratory syndrome-coronavirus-2 spike protein S1 than the non-PASC-CVS patients and healthy controls. Moreover, individuals with high plasma spike protein S1 concentrations exhibited elevated heart rates and normalized low frequency, suggesting cardiac ß-adrenergic receptor (ß-AR) hyperactivity. Microscale thermophoresis (MST) assay revealed that the spike protein bound to ß1- and ß2-AR, but not to D1-dopamine receptor. These interactions were blocked by ß1- and ß2-AR blockers. Molecular docking and MST assay of ß-AR mutants revealed that the spike protein interacted with the extracellular loop 2 of both ß-ARs. In cardiomyocytes, spike protein dose-dependently increased the cyclic adenosine monophosphate production with or without epinephrine, indicating its allosteric effects on ß-ARs. CONCLUSION: Severe acute respiratory syndrome-coronavirus-2 spike proteins act as an allosteric ß-AR agonist, leading to cardiac ß-AR hyperactivity, thus contributing to PASC-CVS.
Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/complicações , COVID-19/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Síndrome de COVID-19 Pós-Aguda , Idoso , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/uso terapêuticoRESUMO
BACKGROUND: MicroRNA (miRNA)-based therapies have shown great potential in myocardial repair following myocardial infarction (MI). MicroRNA-302 (miR302) has been reported to exert a protective effect on MI. However, miRNAs are easily degraded and ineffective in penetrating cells, which limit their clinical applications. Exosomes, which are small bioactive molecules, have been considered as an ideal vehicle for miRNAs delivery due to their cell penetration, low immunogenicity and excellent stability potential. Herein, we explored cardiomyocyte-targeting exosomes as vehicles for delivery of miR302 into cardiomyocyte to potentially treat MI. METHODS: To generate an efficient exosomal delivery system that can target cardiomyocytes, we engineered exosomes with cardiomyocyte specific peptide (CMP, WLSEAGPVVTVRALRGTGSW). Afterwards, the engineered exosomes were characterized and identified using transmission electron microscope (TEM) and Nanoparticle Tracking Analysis (NTA). Later on, the miR302 mimics were loaded into the engineered exosomes via electroporation technique. Subsequently, the effect of the engineered exosomes on myocardial ischemia and reperfusion (I/R) injury was evaluated in vitro and in vivo, including MTT, ELISA, real-time quantitative polymerase chain reaction (PCR), western blot, TUNNEL staining, echocardiogram and hematoxylin and eosin (HE) staining. RESULTS: Results of in vitro experimentation showed that DSPE-PEG-CMP-EXO could be more efficiently internalized by H9C2 cells than unmodified exosomes (blank-exosomes). Importantly, compared with the DSPE-PEG-CMP-EXO group, DSPE-PEG-CMP-miR302-EXO significantly upregulated the expression of miR302, while exosomes loaded with miR302 could enhance proliferation of H9C2 cells. Western blot results showed that the DSPE-PEG-CMP-miR302-EXO significantly increased the protein level of Ki67 and Yap, which suggests that DSPE-PEG-CMP-miR302-EXO enhanced the activity of Yap, the principal downstream effector of Hippo pathway. In vivo, DSPE-PEG-CMP-miR302-EXO improved cardiac function, attenuated myocardial apoptosis and inflammatory response, as well as reduced infarct size significantly. CONCLUSION: In conclusion, our findings suggest that CMP-engineered exosomes loaded with miR302 was internalized by H9C2 cells, an in vitro model for cardiomyocytes coupled with potential enhancement of the therapeutic effects on myocardial I/R injury.
Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Miócitos Cardíacos/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/terapia , Infarto do Miocárdio/genética , Isquemia Miocárdica/terapia , Isquemia Miocárdica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Apoptose , ReperfusãoRESUMO
Neoadjuvant chemotherapy (NACT) is a viable therapeutic option for women diagnosed locally advanced cervical cancer (LACC). However, the factors influencing pathological response are still controversial. We collected pair specimens of 185 LACC patients before and after receiving NACT and conducted histological evaluation. 8 fresh tissues pre-treatment were selected from the entire cohort to conducted immune gene expression profiling. A novel pathological grading system was established by comprehensively assessing the percentages of viable tumor, inflammatory stroma, fibrotic stroma, and necrosis in the tumor bed. Then, 185 patients were categorized into either the good pathological response (GPR) group or the poor pathological response (PPR) group post-NACT, with 134 patients (72.4%, 134/185) achieving GPR. Increasing tumor-infiltrating lymphocytes (TILs) and tumor-infiltrating lymphocytes volume (TILV) pre-treatment were correlated with GPR, with TILV emerging as an independent predictive factor for GPR. Additionally, CIBERSORT analysis revealed noteworthy differences in the expression of immune makers between cPR and non-cPR group. Furthermore, a significantly heightened density of CD8 + T cells and a reduced density of FOXP3 + T cells were observed in GPR than PPR. Importantly, patients exhibiting GPR or inflammatory type demonstrated improved overall survival and disease-free survival. Notably, stromal type was an independent prognostic factor in multivariate analysis. Our study indicates the elevated TILV in pre-treatment specimens may predict a favorable response to NACT, while identifying stromal type in post-treatment specimens as an independent prognostic factor. Moreover, we proposed this pathological grading system in NACT patients, which may offer a more comprehensive understanding of treatment response and prognosis.
Assuntos
Linfócitos do Interstício Tumoral , Terapia Neoadjuvante , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/tratamento farmacológico , Pessoa de Meia-Idade , Linfócitos do Interstício Tumoral/imunologia , Adulto , Resultado do Tratamento , Idoso , Intervalo Livre de DoençaRESUMO
PURPOSE: Static field (B0) inhomogeneities present a major challenge in high-field MRI. Multicoil shimming using independent, local, direct-current (DC) shim coils has emerged as a powerful and flexible technique to address this issue. However, many-turn DC coils can lead to significant mutual coupling with radiofrequency (RF) coils, causing transmit field (B1 +) distortions and signal-to-noise ratio degradation. METHODS: We introduce an innovative RF-transparent DC coil that performs B0 shimming while minimizing RF performance impact. The design incorporates float traps to maintain high RF impedance, allowing flexible placement relative to the RF coil without compromising signal-to-noise ratio or affecting B1 +. We fabricated square-shaped DC coils with float traps for 3T MRI and compared them with conventional DC coils. To demonstrate high ΔB0/Amp efficiency, we conducted a B0 shimming experiment around a metal hip implant. RESULTS: Bench tests and MRI experimental results demonstrated that the RF-transparent DC coil effectively minimized RF interference, preserved signal-to-noise ratio, and maintained B1 +, even when placed near the RF receive coil. Additionally, the DC coil significantly improved B0 homogeneity near metal implants and substantially reduced image distortion. CONCLUSION: The RF-transparent DC coil offers a flexible, effective solution for managing B0 inhomogeneities, paving the way for integrating multiturn DC coils in clinical MRI settings without extensive hardware modifications.
RESUMO
BACKGROUND: Microecological equilibrium is essential for human health. Previous research has demonstrated that Streptococcus strain A, the main bacterial group in the respiratory tract, can suppress harmful microbes and protect the body. In this study, Streptococcus strain D19T was isolated from the oral and pharyngeal cavities of healthy children. Its antibacterial mechanism against Acinetobacter baumannii was examined, as well as its potential to prevent inflammatory damage to cells. We evaluated the effect of the fermentation conditions of D19T on inhibition of Acinetobacter baumannii growth; Isolation and purification of antibacterial active components of strain D19T and molecular mechanism of inhibition of Acinetobacter baumannii; Molecular mechanism of D19T antibacterial protein reversing cellular inflammatory injury induced by Acinetobacter baumannii. RESULTS: The supernatant of fermentation broth of Streptococcus D19T was the active component against Acinetobacter baumannii, but the bacteria had no antibacterial activity. The supernatant of D19T fermentation broth was precipitated by (NH4)2SO4 solution, and the protein was the active antibacterial component. After gel filtration chromatography and anion gel filtration chromatography, the molecular weight of antibacterial protein was 53kD. D19T antibacterial protein can improve cell membrane permeability, limit extracellular soluble protein release, inhibit Acinetobacter baumannii biofilm formation, and prevent Acinetobacter baumannii adhesion. Acinetobacter baumannii induces inflammatory damage to respiratory cells via ferroptosis, and the D19T antibacterial protein can counteract this damage, protecting the respiratory tract. CONCLUSION: Streptococcus strain D19T, as a potential probiotic, inhibits the growth of Acinetobacter baumannii and the inflammatory damage of respiratory cells, playing a protective role in human respiratory health.
Assuntos
Acinetobacter baumannii , Antibacterianos , Ferroptose , Streptococcus , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Acinetobacter baumannii/crescimento & desenvolvimento , Humanos , Antibacterianos/farmacologia , Ferroptose/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Streptococcus/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Inflamação , Infecções por Acinetobacter/microbiologia , Aderência Bacteriana/efeitos dos fármacos , FermentaçãoRESUMO
Talaromyces marneffei (TM) immune evasion is an important factor leading to the high mortality rate of Penicilliosis marneffei. N6 -methyladenosine (m6 A) plays important roles in host immune response to various pathogen infections, yet its role in TM and HIV/TM coinfection remains largely unexplored. Here we reported genome-wide transcriptional m6 A profiles of TM mono-infection and HIV/TM coinfection. Our finding revealed dynamic alterations in global m6 A levels and upregulation of the m6 A reader YTH N6 -methyladenosine RNA binding protein C2 (YTHDC2) in TM-infected macrophages. Knockdown of YTHDC2 in TM-infected cells showed an elevated expression of TLR2 through m6 A-dependence, along with upregulation of TNF-α and IL1-ß. Overall, we characterized the m6 A profiles of the host and fungus before and after TM infection, and demonstrated that YTHDC2 mediates the key m6 A site of TLR2 to exert its function. These findings provide new insights into the underlying mechanisms and novel therapeutic approaches for TM diseases.
Assuntos
Coinfecção , Infecções por HIV , Micoses , Humanos , Receptor 2 Toll-Like/genética , RNA HelicasesRESUMO
OBJECTIVE: This research was dedicated to investigating the impact of the SNHG12/microRNA (miR)-15b-5p/MYLK axis on the modulation of vascular smooth muscle cell (VSMC) phenotype and the formation of intracranial aneurysm (IA). METHODS: SNHG12, miR-15b-5p and MYLK expression in IA tissue samples from IA patients were tested by RT-qPCR and western blot. Human aortic vascular smooth muscle cells (VSMCs) were cultivated with H2O2 to mimic IA-like conditions in vitro, and the cell proliferation and apoptosis were measured by MTT assay and Annexin V/PI staining. IA mouse models were established by induction with systemic hypertension combined with elastase injection. The blood pressure in the tail artery of mice in each group was assessed and the pathological changes in arterial tissues were observed by HE staining and TUNEL staining. The expression of TNF-α and IL-1ß, MCP-1, iNOS, caspase-3, and caspase-9 in the arterial tissues were tested by RT-qPCR and ELISA. The relationship among SNHG12, miR-15b-5p and MYLK was verified by bioinformatics, RIP, RNA pull-down, and luciferase reporter assays. RESULTS: The expression levels of MYLK and SNHG12 were down-regulated and that of miR-15b-5p was up-regulated in IA tissues and H2O2-treated human aortic VSMCs. Overexpressed MYLK or SNHG12 mitigated the decrease in proliferation and increase in apoptosis of VSMCs caused by H2O2 induction, and overexpression of miR-15b-5p exacerbated the decrease in proliferation and increase in apoptosis of VSMCs caused by H2O2 induction. Overexpression of miR-15b-5p reversed the H2O2-treated VSMC phenotypic changes caused by SNHG12 up-regulation, and overexpression of MYLK reversed the H2O2-treated VSMC phenotypic changes caused by up-regulation of miR-15b-5p. Overexpression of SNHG12 reduced blood pressure and ameliorated arterial histopathological damage and VSMC apoptosis in IA mice. The mechanical analysis uncovered that SNHG12 acted as an endogenous RNA that competed with miR-15b-5p, thus modulating the suppression of its endogenous target, MYLK. CONCLUSION: Decreased expression of SNHG12 in IA may contribute to the increasing VSMC apoptosis via increasing miR-15b-5p expression and subsequently decreasing MYLK expression. These findings provide potential new strategies for the clinical treatment of IA.
Assuntos
Aneurisma Intracraniano , MicroRNAs , Animais , Humanos , Camundongos , Apoptose , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Peróxido de Hidrogênio/metabolismo , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina , Fenótipo , RNA não Traduzido/genéticaRESUMO
Background: Atrial fibrillation (AF) is a common arrhythmia that can result in adverse cardiovascular outcomes but is often difficult to detect. The use of machine learning (ML) algorithms for detecting AF has become increasingly prevalent in recent years. This study aims to systematically evaluate and summarize the overall diagnostic accuracy of the ML algorithms in detecting AF in electrocardiogram (ECG) signals. Methods: The searched databases included PubMed, Web of Science, Embase, and Google Scholar. The selected studies were subjected to a meta-analysis of diagnostic accuracy to synthesize the sensitivity and specificity. Results: A total of 14 studies were included, and the forest plot of the meta-analysis showed that the pooled sensitivity and specificity were 97% (95% confidence interval [CI]: 0.94-0.99) and 97% (95% CI: 0.95-0.99), respectively. Compared to traditional machine learning (TML) algorithms (sensitivity: 91.5%), deep learning (DL) algorithms (sensitivity: 98.1%) showed superior performance. Using multiple datasets and public datasets alone or in combination demonstrated slightly better performance than using a single dataset and proprietary datasets. Conclusions: ML algorithms are effective for detecting AF from ECGs. DL algorithms, particularly those based on convolutional neural networks (CNN), demonstrate superior performance in AF detection compared to TML algorithms. The integration of ML algorithms can help wearable devices diagnose AF earlier.
RESUMO
BACKGROUND: Phosphofructokinase P (PFKP) is a key rate-limiting enzyme in glycolysis, playing a crucial role in various pathophysiological processes. However, its specific function in tumors remains unclear. This study aims to evaluate the expression and specific role of PFKP across multiple tumor types (Pan-cancer) and to explore its potential clinical significance as a therapeutic target in cancer treatment. METHODS: We analyzed the expression of PFKP, immune cell infiltration, and patient prognosis across various cancers using data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Additionally, we conducted a series of experiments in lung cancer cells, including Western blot, CCK-8 assay, colony formation assay, transwell migration assay, scratch wound healing assay, LDH release assay, and flow cytometry, to evaluate the impact of PFKP on tumor cells. RESULTS: PFKP was found to be highly expressed in most cancers and identified as a prognostic risk factor. Elevated PFKP expression is associated with poorer clinical outcomes, particularly in lung adenocarcinoma (LUAD). Receiver operating characteristic (ROC) curve analysis indicated that PFKP can effectively differentiate between cancerous and normal tissues. The expression of PFKP in most tumors showed significant correlations with tumor mutational burden (TMB), microsatellite instability (MSI), immune score, and immune cell infiltration. In vitro experiments demonstrated that PFKP overexpression promotes lung cancer cell proliferation and migration while inhibiting apoptosis, whereas PFKP deficiency results in the opposite effects. CONCLUSION: PFKP acts as an oncogene involved in tumorigenesis and may influence the immune microenvironment within the tumor. Our findings suggest that PFKP could serve as a potential biomarker for predicting prognosis and the efficacy of immunotherapy in tumors.