Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 259: 119504, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945514

RESUMO

While treating zinc-containing wastewater, recovering zinc for reuse as a secondary resource has significant environmental and economic benefits. Herein, based on the alkali-activated tourmaline tailings geopolymers (TTG) after adsorption of zinc ions (Zn (II)), a series of new composites with in-situ construction ZnS nanoparticles on TTG (ZnS/TTG) were synthesized, and used as photocatalysts for the photodegradation of tetracycline hydrochloride (TCH) in solution. Specifically, ZnS nanoparticles were uniformly and stably distributed in the layered structure of TTG, interweaving with each other to generate an interfacial electric field, which could induce more photocarrier generation. Meanwhile, TTG acted as an electron acceptor to accelerate the electron transfer at the interface, thus enhancing the photodegradation activity for TCH. The active radical quenching experiments combined with the ESR indicated that the active species produced during the photocatalytic degradation of TCH by ZnS/TTG composites were •O2- and photogenerated h+. When the initial concentration of Zn (II) was 60 mg/L, the synthesized 60-ZnS/TTG composites (0.5 g/L) reached 91.53% degradation efficiency of TCH (10 mg/L) at pH = 6. Furthermore, the possible pathways and mechanism of 60-ZnS/TTG composites photodegraded TCH were revealed with the aid of degraded intermediates. This report not only proposed valuable references for reusing heavy metal ions and removing TCH from wastewater, but also provided promising ideas for realizing the conversion of used adsorbents into high-efficiency photocatalysts.

2.
Langmuir ; 39(7): 2797-2807, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36763007

RESUMO

In view of the animal feeds inevitably contaminated by multiple mycotoxins, eco-friendly and efficient palygorskite-montmorillonite (Pal-Mt) materials were prepared to remove polar aflatoxin B1 (AFB1) and weak polar zearalenone (ZEN) from mixed mycotoxins aqueous solution. The adsorption properties and bonding mechanisms between Pal-Mt materials and mycotoxins (AFB1 and ZEN) were investigated systematically. The as-prepared Pal-Mt showed excellent adsorption capacity for AFB1 and ZEN in single- and binary-mycotoxin systems, indicating the effectiveness of Pal-Mt acting as multiple mycotoxin adsorbents. The kinetics of adsorption for ZEN was fast due to the adsorption on the external surface (film and intraparticle diffusion), while AFB1 molecules permeated into mesopores after the external adsorption for the more planar structure. Adsorption isotherms demonstrated that heterogeneous surface adsorption appeared between Pal-Mt and AFB1, and monolayer adsorption occurred on Pal-Mt and ZEN for different polarities of mycotoxins. Thermodynamic parameters illustrated that the adsorption process of both AFB1 and ZEN onto Pal-Mt was spontaneous and endothermic. The adsorption mechanism studies suggested that hydrogen bonding, electrostatic attraction, calcium bridging linkage, and ion-dipole played fundamental roles in the interaction between Pal-Mt and these two mycotoxins.


Assuntos
Micotoxinas , Zearalenona , Animais , Zearalenona/química , Aflatoxina B1/química , Bentonita/química , Micotoxinas/química , Adsorção
3.
Funct Integr Genomics ; 19(1): 191-204, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30251028

RESUMO

Transcription factors are recognized as the key regulators of gene expression. However, the changes in the correlation of transcription factors and their target genes between normal and tumor tissues are usually ignored. In this research, we used mRNA expression profile data from The Cancer Genome Atlas which included 5726 samples across 11 major human cancers to perform co-expression analysis by the Pearson correlation coefficients. Then, integrating 81,357 pairs of transcription factors and target genes from transcription factors databases to find out the changes in the co-expression correlation of these gene pairs from normal to tumor tissues. Based on the changes in the number of co-expressed TF-TG pairs and changes in the level of co-expression, we found the generally reduced correlation between transcription factors and their target genes in cancer. Additionally, we screened out universal and specific transcription factors-target genes pairs which may significant influence particular cancer. Then, we obtained 423 cancer cell line expression profiles from Broad Institute Cancer Cell Line Encyclopedia to verify our results. Some of these pairs like XRCC5-XRCC6 have been reported to involve in multiple cancers, while pairs like IRF1-PSMB9 without any previous articles related to tumor but involve in the biological processes of cancer, which are of great potential to be therapeutic targets. Our research may provide insights to better understand the tumor development mechanisms and find potential therapeutic targets.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Neoplasias/genética , Fatores de Transcrição/genética , Atlas como Assunto , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Bases de Dados Genéticas , Ontologia Genética , Redes Reguladoras de Genes , Genoma Humano , Humanos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Neoplasias/classificação , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
4.
Environ Sci Technol ; 53(12): 6989-6996, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31184128

RESUMO

Low temperature NH3 selective catalytic reduction (NH3-SCR) technology is an efficient and economical strategy for cutting NO x emissions from power-generating equipment. In this study, a novel and highly efficient NH3-SCR catalyst, tourmaline-modified FeMnTiO x is presented, which was synthesized by a simple one-step sol-gel method. We found that the amount of tourmaline has an important impact on the catalytic performance of the modified FeMnTiO x-based catalysts, and the NO x conversion exceeded 80% from 160 to 380 °C with the addition of 5 wt % tourmaline. Compared with the pure FeMnTiO x, the catalytic efficiency at a temperature below 100 °C was increased by nearly 18.9%, and the operation temperature window was broadened significantly. The enhanced catalytic performance of the FeMnTiO x catalyst was mainly attributed to the small spherical nanoparticles structure around the tourmaline powders, resulting in the increased content of Mn3+, Mn4+, and chemical oxygen on the catalytic surface. These as-developed tourmaline-modified FeMnTiO x materials have been demonstrated to be promising as a new type highly efficient low temperature NH3-SCR catalyst.


Assuntos
Amônia , Temperatura Baixa , Catálise , Silicatos , Temperatura
5.
J Nanosci Nanotechnol ; 16(4): 3977-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451750

RESUMO

Under modern and, intensive feeding livestock and poultry density has increased, and brought a deterioration of the farm environment. The livestock and their excrement generate harmful gases such as ammonia, etc. which restricted the sustainable development and improvement of production efficiency of animal husbandry. In this paper, a new kind of far infrared porous ceramics was prepared to activate, the animal drinking water. The activated water and common water were then supplied to pigs, and the fresh pig feces of experimental group and:control group were collected on a regular basis. The residual protein content in feces was tested by Kjeldahl nitrogen method to study the influence law of the porous ceramics on absorbing nitrogen element in animal feces. The results showed that compared with the control group, the protein content in the experimental group decreased on average by 39.2%. The activated drinking water was conducive to the absorption of nitrogen in pig feed. The clusters of water molecules became smaller under the action of the porous ceramics. Hence, they were easy to pass through the water protein channel on the cell membrane for speeding up the metabolism.


Assuntos
Ração Animal/análise , Cerâmica/química , Água Potável/química , Nitrogênio/isolamento & purificação , Suínos/metabolismo , Água/química , Absorção Fisico-Química , Animais , Teste de Materiais , Nanopartículas/química , Nanopartículas/ultraestrutura , Nanoporos/ultraestrutura , Porosidade , Purificação da Água/métodos
6.
J Nanosci Nanotechnol ; 14(5): 3822-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734644

RESUMO

The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

7.
J Nanosci Nanotechnol ; 14(5): 3515-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734580

RESUMO

Surface modification is used to regulate surface free energy of sepiolite with 3-glycidoxypropyltrimethoxysilanes (3-GPTMS), 3-methacryloxypropyltrimethoxysilanes (3-MAPTMS) and 3-mercaptopropyltrimethoxysilane (3-MPTMS). Through characterization by Fourier transform infrared spectroscopy, surface free energy, zeta potential and sedimentation measurements and infrared emissivity, it is found that the surface free energy of 3-MPTMS modified sepiolite decreases to 31.72 mJ/m2 and the percentage of polar component increases to 89.75%, thus leading to that the infrared emissivity of 3-MPTMS modified sepiolite increase to be higher than 0.8 and the dispersion of sepiolite has been improved. The excellent thermal insulation property of coating is prepared with 10% additive amount of 3-MPTMS modified sepiolite and the temperature difference between upper and lower box of modified sepiolite coatings is 10 degrees C which is higher than the untreated sepiolite.

8.
J Nanosci Nanotechnol ; 14(5): 3607-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734598

RESUMO

Mineral black tourmaline powders were heat-treated at different temperatures. Their crystal structure was studied by X-ray diffractometer. Their infrared absorption and emission spectra before and after the heat treatment were analyzed by the Fourier transform infrared spectrometer. The corresponding fine structures were discussed in detail. The results showed that the powders possessed higher infrared emissivity at the band where they showed stronger infrared absorption. However, there is no certain correlation between the peak intensity of infrared absorption and emissivity values at the same frequency. Because of the crystal shrinkage of c-axis, the electronic transitions were stimulated between different energy levels, and the abilities of infrared absorption and emission were enhanced with increasing the temperature of heat treatment.


Assuntos
Temperatura Alta , Minerais/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cristalografia por Raios X , Estrutura Molecular
9.
J Nanosci Nanotechnol ; 14(5): 3817-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734643

RESUMO

Rare earth (RE)/tourmaline composite materials prepared by the precipitation method are added to the ceramic raw materials at a certain percentage and sintered into RE functional ceramics with high far infrared emission features. Then the far infrared functional ceramics are used to interact with water. The influence of the ceramics on the physical parameters of water is investigated, and the effect of the activated water on the growth of Bel-7402 hepatoma cells cultured in vitro is further studied. The results indicate that, compared with the raw water, the water activated by the ceramics can inhibit the proliferation of hepatoma cells, with statistical probability P < 0.01, which means that the effect is significant. It can be explained that the water activated by the ceramics has a higher concentration of H+, which decreases the potential difference across the cell membrane to release the apoptosis inducing factor (AIF). After entering the cells, the activated water stimulates the mitochondria to produce immune substances that lead tumor cells to apoptosis.


Assuntos
Carcinoma Hepatocelular/patologia , Proliferação de Células , Cerâmica , Neoplasias Hepáticas/patologia , Água/química , Humanos , Microscopia Eletrônica de Varredura
10.
J Nanosci Nanotechnol ; 14(5): 3861-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734652

RESUMO

Nano zinc oxide with a high refractive index has good thermal reflection performance, hollow glass microspheres have good thermal reflection and insulation performance, and sepiolite nanofibers with many nanostructural pores have good thermal insulation performance. The dispensability of nano zinc oxide in coating materials was improved by optimizing surface silane coupling agent modification process, leading to the good thermal reflection performance. The thermal insulation performance was improved by hollow glass microspheres and sepiolite nanofibers. On this basis, the thermal insulation coating materials were prepared by exploring the effect of amount, complex mode, and other factors of the above three kinds of functional fillers on the thermal reflection and insulation performance of coating materials. The results showed that the surface modification effect of nano zinc oxide was the best when the silane coupling agent addition was 6%. The reflection and insulation performance of the coatings were the best when the additions of modified nano zinc oxide, hollow glass microspheres, and sepiolite nanofibers were 3%, 4%, and 4%, respectively. Compared with the control coating materials, the thermal insulation effect was improved obviously, which was evaluated by the -13.5 degrees C increase of maximum temperature difference between the upper and the lower surfaces.

11.
J Nanosci Nanotechnol ; 14(5): 3937-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734668

RESUMO

The longitudinal and cross sectional TEM images of sepiolite mineral nanofibers were prepared by cutting in the direction parallel and perpendicular to nanofibers, and the channel microstructure of sepiolite nanofibers was studied. The thermal insulation mechanism of sepiolite nanofibers was analyzed according to the diagrammatic sketch obtained from the above experimental method. The results showed that many discontinuously connected bending shape channels with about 23-26 nm in diameter existed in the center region of nanofibers, and many discontinuously connected irregular micropores and mesopores with the size of about 1-9 nm existed on the wall of nanofibers. The main reasons for the formation of channel microstructure in sepiolite nanofibers were their minerogenetic conditions and the interaction between acid and high-speed airflow in the process of nanofibers preparation, and bubbles in the hydrotherm played a significant role in the microstructure formation. The thermal insulation performance of sepiolite nanofibers could be attributed to obstructive and infrared radiative thermal insulation.

12.
J Nanosci Nanotechnol ; 14(5): 3943-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734669

RESUMO

Tourmaline nano-particles were successfully prepared via a hydrothermal process using HCl as an additive. The reaction temperature (T) and the concentration of HCI (C(HCl)) had effects on the size and morphology of the tourmaline nano-particles. The optimum reaction condition was that: T = 180 degrees C and C(HCl) = 0.1 mol/l. The obtained nano-particles were spherical with the diameter of 48 nm. The far-infrared emissivity of the product was 0.923. The formation mechnism of the tourmaline nano-particles might come from the corrosion of grain boundary between the tourmaline crystals in acidic hydrothermal conditions and then the asymmetric contraction of the crystals.

13.
Se Pu ; 42(1): 99-105, 2024 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-38197211

RESUMO

Significant developments have recently been achieved in the field of N-lauryl amino acid (NLAA) surfactants derived from renewable resources. Compared with conventional surfactants, NLAAs exhibit remarkable surfactant properties, exceptional biodegradability, good biocompatibility, and high safety profiles. These attributes have led to the widespread use of NLAAs in personal-care products. The detection methods employed for NLAAs include two-phase titration (TT), spectrophotometric analysis (SA), and high performance liquid chromatography (HPLC). However, because both TT and SA measure the total concentration of anionic active matter, identifying and quantifying individual compounds in a sample containing multiple anionic surfactants is impossible. The presence of cationic surfactants in the sample also introduces interferences, which lead to significant errors. Compared with TT and SA, HPLC offers direct and rapid testing procedures. However, compounds with no or weak UV-visible light absorption exhibit low sensitivity when detected by UV, necessitating the use of detectors such as differential refractive index detectors (RIDs), evaporative light scattering detectors (ELSDs), or charged aerosol detectors (CADs). Most HPLC users consider UV light as the fundamental configuration of the instrument, and other detectors are less commonly employed. Therefore, establishing a new HPLC method suitable for the UV detection of NLAAs is of practical significance. In this study, a novel HPLC-UV method was developed for the simultaneous detection of N-lauryl glutamine (LG), N-lauryl glycine (LC), N-lauryl alanine (LA), and N-lauryl sarcosine (LS) by optimizing the mobile-phase composition and selecting an appropriate chromatographic column and detection wavelength. The samples were mixed with acetonitrile-0.10% H3PO4 aqueous solution (60∶40, v/v) and sonicated for 10 min, then stayed at room temperature for 5 min. Subsequently, the mixture was filtered through a 0.22 µm filter membrane and separated on an Agilent Eclipse Plus C18 column (150 mm×4.6 mm, 5 µm). The mobile phase used for separation consisted of acetonitrile-0.10% H3PO4 aqueous solution at a flow rate of 1.0 mL/min. The detection wavelength was set at 205 nm, and the injection volume was 10 µL. The results demonstrated that the four NLAAs exhibited good linearity in the range of 2.0-800.0 mg/L, with correlation coefficients (r)≥0.9995. The limits of detection (LODs) ranged from 0.17 to 0.49 mg/L, and limits of quantification (LOQs) ranged from 0.57 to 1.63 mg/L. The relative standard deviations (RSDs) for precision, repeatability, and stability over 24 h were all below 2.0%. Using this method, the NLAA contents of five facial-cleanser products were determined. The results demonstrated that all five samples contained one or more NLAAs, and the total NLAA contents ranged from 64.58 to 97.01 mg/g. The five spiked-sample recoveries of the NLAAs at four different spiked levels (0.60, 4.50, 15.00, 24.00 mg/g) ranged from 94.3% to 107.4%, indicating satisfactory accuracy. However, the actual NLAA composition and label for one facial-cleanser product were not consistent with our test results. This finding demonstrates the necessity of strengthening market monitoring through testing. The proposed method has the advantages of simple pretreatment, rapid testing, good precision, high accuracy, and appropriate stability. Thus, it is suitable for the determination of NLAA contents in facial cleansers and provides an effective technical reference for the raw-material purity assessment, synthetic yield detection, and product quality control of this type of surfactant.


Assuntos
Aminoácidos , Tensoativos , Cromatografia Líquida de Alta Pressão , Glicina , Acetonitrilas
14.
J Hazard Mater ; 475: 134774, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870850

RESUMO

Currently, the low cost and effective purification toward heavy metal ions in wastewater has garnered global attention. Herein, we used hydrothermal method to prepare highly dispersed calcium silicate hydrate in fluorite tailings. And the stacking thickness of calcium silicate hydrate layered morphology was less than 5 nm. For high concentration Cu2+ purification investigation in wastewater, we found that the equilibrium adsorption capacity reached 797.92 mg/g via the CSH with 3:2 Ca/Si molar ratio, be 1.43-21.8 times than that of reported data. Therein, the metal-metal exchange and deposition are the primary pathways for Cu2+ adsorption, and electrostatic attraction is the secondary pathway. And the relative ∼100 % removal rate of high-concentration Ni2+ and Cr3+ ions were confirmed via CSH prepared from different tailings. This method offers a cost-effective way to utilize tailings for preparing highly efficient adsorbents toward HMIs removal in wastewater.

15.
Materials (Basel) ; 15(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744293

RESUMO

In this study, ball mill pretreated iron ore tailings were modified with tetraethoxysilane (TEOS) and hexadecyltrimethoxysilane (HDTMS) to obtain iron ore tailings/polysiloxane (IOT/POS) superhydrophobic powders, which were subsequently mixed with chloroprene rubber solution (CRS) to prepare durable superhydrophobic composite coatings. The effect of HDTMS amount and reaction time on the wettability of the superhydrophobic powder was investigated. The influence of the superhydrophobic powders concentration on the wettability of the composite coatings as well as the degree of damage of the superhydrophobicity of the composite coating was analyzed by using the sandpaper abrasion and tape peeling tests. Further, SEM and FTIR were used to analyze the formation mechanism of the IOT/POS superhydrophobic powders and coatings. The results showed for an HDTMS amount of 2.5 mmol and reaction time of 4 h, the contact angle of the IOT/POS powder was 157.3 ± 0.6°, whereas the slide angle was determined to be 5.9 ± 0.8°. For an IOT/POS powder content of 0.06 g/mL in CRS, the contact angle value of the superhydrophobic composite coating was 159.2 ± 0.5°, whereas the slide angle value was 5.5 ± 0.8°. The superhydrophobic composite coating still maintained the superhydrophobicity after the sandpaper abrasion and tape peeling tests, which indicated the iron ore tailings solid waste has the potential to prepare superhydrophobic coatings.

16.
Materials (Basel) ; 15(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268987

RESUMO

In order to realize the high value-added resource utilization of solid waste and reduce the cost of rubber manufacturing, iron ore tailings (IOTs) were used as raw material to prepare a reinforcing filler of rubber through ultrafine grinding and surface organic modification techniques. We studied the effects of ball mill grinding conditions on the particle size and distribution of grinded iron ore tailings (G-IOTs). The effects of bis-(triethoxy-silyl-propyl)-tetrasulfide (Si69)-modified G-IOT (Si69-G-IOT) loading levels on the cure characteristics, static mechanical and dynamic mechanical properties of the styrene butadiene rubber (SBR) composites were also explored in this paper. The grinding and modification mechanism of IOTs and the combination of filler and SBR matrix were explored by grinding simulation of population balance model, X-ray diffraction analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The results showed that when grinding IOTs at 2000 r/min for 150 min, the particle size distribution of the resulting G-IOTs was the narrowest, with a D90 value of 4.42 µm. The tensile strength and elongation at break of SBR filled with 120 phr Si69-G-IOT were 14.97 MPa and 596.36%, respectively.

17.
Nanoscale ; 14(11): 4089-4097, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35075465

RESUMO

Atmosphere-related atom migration and phase reconstruction are an easy way for optimizing the catalytic activity of a bimetallic catalyst. Herein, the structure evolutions of NiAu nanoparticles under oxidative and reductive environments are investigated via combining identical location and in situ environmental scanning transmission electron microscopy. During oxidation, a NiO layer first forms and the redispersion of Ni and Au atoms yields a Ni@Au@NiO multi-shell structure at 350 °C. Further, Ni and Au segregate into an Au-NiO hybrid structure at 600 °C. During reduction, Au atoms disperse over the particle surface forming a NiAu alloy shell with scattered Au atoms/clusters. In situ observation further discloses that the reduction changes the local structural ordering from Ni3Au to NiAu alloy. Very interestingly, the reduced NiAu exhibits promoted activity over oxidized ones for the CO-NO reaction. Density functional theory calculations further reveal the structure-property relationships of CO, NO, and O adsorbates on NiAu alloy surfaces. This study is beneficial for understanding the atmosphere-related evolution behaviors of bimetallic systems, thereby inspiring the catalytic surface optimization.

18.
Mar Pollut Bull ; 183: 114087, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36084612

RESUMO

In the past three decades, nuclear energy has gained much attention as carbon-free electricity. Due to the supply of cooling water in nuclear power plant, large amount of waste heat will increase the water temperature, promote the microalgae and cyanobacteria propagation and increase the chance of red tide. Excess phytoplankton of cool source will result in abnormal operation of cooling system, even core overheating and nuclear leakage. Consequently, it is very important to remove microalgae and cyanobacteria from cold source of nuclear power plants. This review summarizes the formation mechanism and monitoring methods of red tide, compares the advantages and disadvantages of traditional microalgae removal technology including physical, chemical and biological methods. Furthermore, the improved electrochemical method and micro-nano bubble method are introduced in detail. Their combination is considered to be a low-cost, efficient and environmentally-friendly technology to prevent and control red tides for cold source of nuclear power plant.


Assuntos
Cianobactérias , Microalgas , Centrais Nucleares , Fitoplâncton , Tecnologia , Água
19.
J Nanosci Nanotechnol ; 11(11): 9594-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22413254

RESUMO

Dispersed nano-CeO2 successfully grew on the surface of natural tourmaline powders by a precipitation method. The results of Fourier transform infrared spectroscopy (FTIR) showed that CeO2 (111) nanospots could apparently enhance the far infrared emission property of tourmaline in relation to CeO2 nanoparticles. This is the first report regarding the effect of the morphology of nano-CeO2 on the far infrared emission property of natural tourmaline. The results of the characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) showed that CeO2 (111) nanospots have much more chemisorbed oxygen than CeO2 nanoparticles, which is beneficial to the unit cell volume shrinkage of tourmaline, thus increasing its far infrared emissivity.

20.
J Nanosci Nanotechnol ; 11(11): 9928-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22413324

RESUMO

For the tourmaline fine powders, in view of their low polarized charge density and easily occurred neutralization, a new evaluation model on the spontaneous polarity was proposed. By adjusting the temperature and applying electric field, the polarized charge could be measured. On this basis, a portable evaluation device was designed and assembled into four parts: Voltage Input Unit, Temperature Control Unit, Sample Loading Unit, and Charge Detection Unit. Using the designed device, the property evaluation on the spontaneous polarity of tourmaline fine powders was carried out. The spontaneous polarization intensity was finally achieved. After experimental verification, the method had the characteristics of easy operation and high accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA