Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(4): 198, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483636

RESUMO

Defective metal-organic frameworks-based composites with excellent separation properties were obtained. The mesoporous metal-organic frameworks were selected and deliberately designed to be deficient, and they were then combined with polyacrylamide to be modified on the surface of silica microspheres. The prepared composites were employed as mixed-mode stationary phase in chromatographic separation, and they were compared to both conventional microporous metal-organic framework-based columns and commercial columns. It showed improved selectivity and retention toward both hydrophilic and hydrophobic analytes, allowing for the effective separation of nine nucleosides and nucleobases, eight alkaloids, six antibiotics, and five alkylbenzenes. Additionally, the column was used to effectively separate the active ingredients in the daring substance of honeysuckle, revealing a wide range of possible applications. For the same batch of analytes, three batches of distinct materials demonstrated consistent separation effects. It also demonstrated excellent chromatographic repeatability and stability, with relative standard deviations of the retention time and/or column efficiency being found to be less than 0.8% and 0.9%, respectively. The dispersive hierarchically porous composites were demonstrated to be effective in chromatographic separation, and the results expanded the potential uses of defective MOFs with dispersed multi-level pores.

2.
Cell Mol Life Sci ; 79(2): 118, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119538

RESUMO

Store-operated Ca2+ entry (SOCE) is a major pathway for calcium signaling, which regulates almost every biological process, involving cell proliferation, differentiation, movement and death. Stromal interaction molecule (STIM) and ORAI calcium release-activated calcium modulator (ORAI) are the two major proteins involved in SOCE. With the deepening of studies, more and more proteins are found to be able to regulate SOCE, among which the transmembrane (TMEM) family proteins are worth paying more attention. In addition, the ORAI proteins belong to the TMEM family themselves. As the name suggests, TMEM family is a type of proteins that spans biological membranes including plasma membrane and membrane of organelles. TMEM proteins are in a large family with more than 300 proteins that have been already identified, while the functional knowledge about the proteins is preliminary. In this review, we mainly summarized the TMEM proteins that are involved in SOCE, to better describe a picture of the interaction between STIM and ORAI proteins during SOCE and its downstream signaling pathways, as well as to provide an idea for the study of the TMEM family proteins.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Ligação Proteica , Retículo Sarcoplasmático/metabolismo
3.
Anal Chem ; 93(48): 16017-16024, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34817981

RESUMO

We reporte the double-layer hydrogel-coated mesoporous silica material as a new stationary phase for liquid chromatography. The method of combining physical coating and chemical coating was to apply hydrogel coating on the surface of silica, and finally, a new type of liquid chromatography stationary phase with in situ coating of the functional hydrogel on silica was obtained. This hydrogel-functionalized liquid chromatography stationary phase also exhibits a certain temperature responsiveness. Experimental results show that this temperature response is mainly due to changes in the hydrogen bonding between the stationary phase and the analyte at different temperatures in the column oven, which leads to changes in retention behavior. The hydrogel-coated mesoporous silica microspheres showed excellent selectivity for many polar analytes. An excellent column efficiency was obtained (139 000 plates/m for terephthalic acid) after optimization of chromatographic conditions. In addition to rapid separation of some analytes, this new hydrogel stationary phase also has certain superiority in chromatographic performance compared with other new excellent liquid chromatography stationary phases functioned by three-dimensional cross-linking systems. The important thing is that this strategy is relatively easy to prepare a new stationary phase with different properties.


Assuntos
Hidrogéis , Dióxido de Silício , Cromatografia Líquida , Microesferas , Temperatura
4.
Langmuir ; 37(18): 5745-5752, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33929871

RESUMO

Droplet manipulation plays an important role in scientific research, daily life, and practical production such as biological and chemical analysis. Inspired by the structure and function of three typical leaf veins, the bionic texture was replicated by the template method, and the artificial leaf was selectively treated by nanoparticles to obtain a quasi-three-dimensional hybrid superhydrophobic-hydrophilic surface. When the droplet touches the surface of the leaf, it will be attracted to the bottom of the main vein from different directions even in horizontal conditions due to the Laplace pressure gradient and energy gradient. The simulation analysis demonstrates that the reason for directional transportation is the energy gradient of the droplets on the different levels of veins, including the thin veins, lateral veins, and main vein. Meanwhile, the experimental result of water collection also showed an outstanding directional transportation effect and excellent water collection efficiency. In addition, when the sample is tilted upside down, the droplet will flow back to the main vein along the lateral vein and then flow down the main vein, showing a good droplet pumping effect. Therefore, the directional and polydirectional transportation of droplets on the same sample is successfully realized, and the conversion between executing single and multiple tasks simultaneously can be realized only by upright and inverted samples. This work provided a new strategy for directional and polydirectional water manipulation, water collection, directional drainage, and microfluidic devices.

5.
Analyst ; 146(20): 6262-6269, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34546229

RESUMO

Inspired by porous smart gel materials, we designed pH-responsive polymer-modified silica microspheres as liquid chromatography stationary phase materials by a one-step strategy. The free radicals generated by the oxidation of dopamine are used to initiate the cross-linking polymerization of functional monomers. At the same time, the good adhesion of dopamine enables the polymer to be modified on silica. The hydrophilicity of this new stationary phase can change in response to the pH of the mobile phase and the stationary phase has weaker hydrophilicity under acidic (pH = 3.78) mobile phase conditions and stronger hydrophilicity under neutral mobile phase conditions. The hydrophilicity difference of the stationary phase leads to the selectivity difference in separation. To evaluate the chromatographic performance of this new stationary phase, 10 oligosaccharides and 9 nucleosides/bases were separated on this stationary phase. This paper will provide good guidance for us to achieve more pH-responsive hydrophilic/hydrophobic stationary phases in the future.


Assuntos
Dióxido de Silício , Materiais Inteligentes , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microesferas
6.
Mikrochim Acta ; 188(10): 360, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599383

RESUMO

The synthesis of two-dimensional metal-organic frameworks (2D MOFs)/polymer core-shell composites is reported which were composed of polydopamine modified 2D Zr-1,3,5-(4-carboxylphenyl)-benzene (2D Zr-BTB) nanosheets and silica microspheres via a double-solvent approach. In this way, the composites were obtained under the condition of two solvents with different polarities to avoid agglomeration and uneven modification of most MOFs particles on the surface of the silica, existing inevitably in the one-pot method. Compared with the reported MOFs@silica composites adopting one-pot solvent method, the prepared composites exhibited significantly enhanced separation performance for sulfonamides, antibiotics, nucleosides, and polycyclic aromatic hydrocarbons compounds. Furthermore, the retention mechanisms were demonstrated by studying the relationships of chromatographic retention factors of tested analytes versus a variety of parameters under RPLC and HILIC modes, respectively. The superior chromatographic repeatability and stability were validated through the relative standard deviations of the retention time and/or column efficiency, which were found to be less than 0.8% and 0.9%, respectively. The material showed efficient separation ability for several types of compounds and provided another selectivity for preparing composites based on 2D MOFs nanosheets and other functional molecules.

7.
Mikrochim Acta ; 188(12): 433, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34825998

RESUMO

By introducing functional groups such as quaternary amine groups, sulfonic acid groups, triazine groups, and other mespore nanomaterials into the hydrogel, better separation effect of some organic framework materials has been obtained. Due to a reasonable design and preparation strategy, the hydrogel composite-modified silica can be used in the selective separation of various analytes such as pesticides, alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides/bases, benzoic acids, antibiotics, and carbohydrates. Through the exploration of chromatographic retention behavior, it is proved that the column can be used in mixed-mode liquid chromatography. The intra-day relative standard deviation for retention time of this new stationary phase is 0.12-0.16% (n = 10), and the inter-day relative standard deviation is less than 0.39% (n = 5). This new stationary phase can also be used for separation in complex samples. The limit of detection (LOD) for chlorotoluron in farm irrigation water is 0.21 µg/L and the linear range is 2-250 µg/L. After optimizing the chromatographic conditions, the highest efficiency of the hydrogel column in RPLC and HILIC modes has reached 32,400 plates/m (chlorobenzuron) and 41,300 plates/m (galactose). This new type of hydrogel composite is a porous network material with flexible functional design and simple preparation method and its application has been expanded in liquid chromatography separation successfully. The hydrogel composed of triallyl cyanate cross-linking agent and 3-(2-(methacryloyloxy) ethyl) dimethylamine) propane-1-sulfonate (SBMA) monomer which were co-modified on the surface of mesoporous silica with MOF-919 for separation in mixed-mode liquid chromatography.

8.
Mikrochim Acta ; 188(3): 76, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559844

RESUMO

A general method was developed for preparing a metal-organic framework-polymer composite coated silica core-shell stationary phase. Silica microspheres were comodified with metal-organic framework and polyvinylpyrrolidone rather than the in situ method of silica modification by original metal-organic framework particles. Metal-organic framework particles and polyvinylpyrrolidone on silica surface were beneficial to suppress silanol activity and enhance composite material tolerance, as well as increasing the water compatibility of the original metal-organic framework-based stationary phases. The stationary phase exhibited superior hydrophilic and hydrophobic performance in terms of separation for various analytes including seven alkaloids, six sulfonamides, five antibiotics, and five polycyclic aromatic hydrocarbons. Moreover, the composite material also showed excellent stability with the relative standard deviation of the retention time of 0.4 to 0.7%. The separation performance with real samples proved that the column has good practical application potential. In summary, the poposed method provides a general way for preparing metal-organic framework-polymer composite material and changed the current status of original metal-organic framework particles modified silica as a single mode chromatographic stationary phase.

9.
Analyst ; 145(11): 3851-3856, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32215403

RESUMO

A new type of core-shell composite material was prepared and applied as a hydrophilic interaction liquid chromatography (HILIC) stationary phase. In this work, silica spheres were first modified with a bimetallic central metal-organic framework (ZnCoMOF) by a new strategy of static self-assembled in situ growth. This strategy was beneficial for increasing the electrostatic interaction between the MOF ligand and silica via introducing a sodium dodecylbenzenesulfonate (SDBS) group. The ZnCoMOF@silica stationary phase was characterized and evaluated in comparison with amino-modified and bare silica columns in terms of various polar analytes including eight nucleosides and nucleobases, seven carbohydrates, and multiple sulfonamides and antibiotics. The effects of organic solvent concentration, water content, the concentration of the salt and the pH of the buffer solution on the retention time were studied, which demonstrated the typical retention behavior of HILIC on the ZnCoMOF@silica column. Compared with most reported MOF-based stationary phases, the new composite material showed excellent hydrophilic properties and separation efficiency for various polar analytes. Moreover, the obtained stationary phase showed good reproducibility and stability. The relative standard deviation (RSD) of the retention time for repeatability was found to range from 0.1% to 0.6%, and the RSD of the retention time for stability was found to range from 0.3% to 0.7%. Furthermore, the column batch-to-batch reproducibility showed excellent preparation reproducibility, which few reported in most previous MOF@silica composite materials. This specific preparation method offers an easy and novel way to manipulate the amount of MOF particles on silica, which extends a universal way to produce various MOF@silica stationary phases by the method of static self-assembled in situ growth.

10.
Analyst ; 145(4): 1433-1444, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31858096

RESUMO

A magnetic solid-phase extraction (MSPE) technique coupled with high performance liquid chromatography (HPLC) was developed and used for bioaccumulation investigation of bisphenol A (BPA) in HepG2 cells and zebrafishes. Cobalt magnetic polystyrene microsphere derived carbon (C-Co@PST) as an adsorbent was prepared by in situ polymerization reaction and further annealing treatment. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction were employed to confirm successful synthesis of C-Co@PST. A series of extraction parameters including the amount of the sorbent, the type of elute, extraction time and elution time were investigated to achieve high extraction efficiency. C-Co@PST based MSPE combined with HPLC was successfully established for bioaccumulation research of BPA in living creatures. It was found that the bioconcentration values of BPA in HepG2 cells underwent an increase, then a decrease, and finally reached an equilibrium level of 11.60 µg kg-1 at 8 h. The concentration of BPA in zebrafishes increased ranging from 6.05 µg kg-1 to 31.84 µg kg-1 over a culture time from 1 h to 12 h. Furthermore, linear and exponential models were employed to analyse the bioconcentration variation of BPA in organisms over the exposure time. Mathematical models have been developed to predict the transfer characteristics of BPA.


Assuntos
Compostos Benzidrílicos/metabolismo , Carbono/química , Cobalto/química , Fenômenos Magnéticos , Fenóis/metabolismo , Poliestirenos/química , Extração em Fase Sólida/métodos , Peixe-Zebra , Adsorção , Animais , Compostos Benzidrílicos/química , Compostos Benzidrílicos/isolamento & purificação , Células Hep G2 , Humanos , Microesferas , Fenóis/química , Fenóis/isolamento & purificação
11.
Mikrochim Acta ; 187(1): 88, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31897612

RESUMO

Magnetic hierarchical nickel/nickel oxide/carbon nanorods (Ni/NiO@C) were prepared via the pyrolysis of a metal-organic framework containing nickel(II) nickel (Ni-MOF; Ni3(BTC)2) under argon atmosphere. In this material, magnetic Ni/NiO@C nanoparticles are embedded in porous carbon nanorods, and the morphology is similar to that of the original Ni-MOF precursor. The synthesized nanorods were applied as magnetic sorbents in the solid-phase extraction of five benzoylurea insecticides (flufenoxuron, chlorbenzuron, teflubenzuron, diflubenzuron and triflumuron), and their performance was evaluated under optimized conditions. The results show that the material exhibits high extraction recoveries from spiked samples (82.9%-107.6%) and linear response in the range of 0.2-450 µg·L-1. It is also characterized by relatively low limits of detection (50-100 ng·mL-1) at a signal-to-noise ratio of 3. The sorbent is chemically stable and can be repeatedly recycled, with little decline in extraction capacity after 20 cycles of reuse. The method was successfully applied to the quantification of benzoylureas in tea, wolfberry, millet, and oat samples, and it showed high extraction efficiency. Graphical abstractSchematic representation of the synthesis of magnetic hierarchical nickel/nickel oxide/carbon nanorods derived from Ni-MOF. The material is employed as a sorbent for the magnetic solid-phase extraction of benzoylurea insecticides.


Assuntos
Inseticidas/isolamento & purificação , Magnetismo , Estruturas Metalorgânicas/química , Nanotubos/química , Cromatografia Líquida de Alta Pressão , Inseticidas/análise , Níquel/química , Compostos de Fenilureia/análise , Compostos de Fenilureia/química , Compostos de Fenilureia/isolamento & purificação , Extração em Fase Sólida/métodos , Extração em Fase Sólida/normas
12.
Analyst ; 144(9): 3072-3079, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916685

RESUMO

Au nanoparticle-hybridized silica (Au@sil) spheres were synthesized in one step as a liquid chromatographic stationary phase for the first time. The hybridized stationary phase showed good separation performances in reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography even without bonding with any organic groups. Compared with the bare silica stationary phase, the Au@sil stationary phase showed better separation performance under the same conditions in RPLC and HILIC modes. The effects of acetonitrile content, buffer concentration, and the pH of the mobile phase on analyte retention were further investigated. The results showed that the Au@sil stationary phase had a complex retention mechanism of electrostatic and partitioning interactions. By comparing Au solution (solAu) with different proportion volumes in silica sol, the optimum hybridized stationary phase was found to comprise 33 vol% solAu. Au@sil was further modified with 1-octadecanethiol by self-assembly and used to separate alkylbenzenes and polycyclic aromatic hydrocarbons by RPLC. The separation efficiency of the 1-octadecanethiol self-assembled modified Au@sil (C18-Au@sil) column was much better than that of Au@sil. Overall, the successful hybridization of Au nanoparticles provided a new method to prepare a stationary phase in a simple and environmentally friendly way.

13.
J Sep Sci ; 42(12): 2148-2154, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30997954

RESUMO

A zirconium(IV)-based metal-organic framework material (MOF-808) has been synthesized in a simple way and used for the extraction of phenoxyacetic acids in complex samples. The material has good thermal and chemical stability, large specific surface area (905.36 m²/g), and high pore size (22.18 Å). Besides, it contains a large amount of Zr-O groups, easy-to-form Zr-O-H bond with carboxyl groups of phenoxyacetic acids, and possesses biphenyl skeleton structure, easy to interact with compounds through π-π and hydrophobic interactions. These characteristics make the material very suitable for the extraction of certain compounds with a high extraction efficiency and excellent selectivity. The extraction conditions were optimized, and then an analytical method was successfully established and applied for analysis of actual samples. The solid-phase extraction method based on prepared material had a wide linear range of 0.2-250 µg/L and a low detection limit of 0.1-0.5 µg/L for four phenoxyacetic acid compounds including 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy) propionic acid, 4-chlorophenoxyacetic acid, and dicamba. The relative standard deviations of intra- and interday precision were 1.8-3.8 and 4.3-6.9%, and the recoveries after spiking were between 77.1 and 109.3%. The results showed that the material is a desired substituent for the extraction of compounds with benzene ring structure containing carboxyl groups.

14.
J Sep Sci ; 41(22): 4149-4158, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30194810

RESUMO

A zirconium(IV)-based metal organic framework, composed of 4,4'-biphenyldicarboxylic acid ligands and Zr6 O4 (OH)4 clusters, was successfully fabricated. Characterizations were performed on fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, and thermogravimetric analysis, which confirmed that it possessed large specific surface area, high pore volume, and strong acid resistant stability. Furthermore, the prepared material containing biphenyl skeleton and a large number of Zr-O bonds, can grasp acid herbicides especially phenoxyacetic acid herbicides with aromatic structures through π-π interaction, hydrophobic interaction and Zr-O-H+ bonds. Based on these advantages, a method was developed for the determination of four phenoxyacetic acid herbicides from vegetable samples. Under the optimal conditions, wide linearities from 0.3 to 250 µg/L and low limits of detection from 0.1 to 0.5 µg/L were obtained. The intra- and interday relative standard deviations were 1.56-3.92 and 5.01-7.65%, respectively. The proposed method was applied to analyze phenoxyacetic acid herbicides residues in the tomato, cucumber, and white gourd samples. The satisfactory recoveries (86.12-103.44%) for the spiked samples in vegetable samples were achieved which demonstrated the method was an efficient pretreatment procedure and has a potential application for the trace determination of phenoxyacetic acids from a complex matrix.


Assuntos
Acetatos/isolamento & purificação , Herbicidas/isolamento & purificação , Estruturas Metalorgânicas/química , Compostos Organometálicos/química , Extração em Fase Sólida , Verduras/química , Zircônio/química , Acetatos/química , Adsorção , Herbicidas/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
15.
Mikrochim Acta ; 185(10): 468, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232631

RESUMO

A method is described for extracting and detecting the fluorescent reaction product (2',7'-dichlorofluorescein, DCF) that is formed by reaction of reactive oxygen species (ROS) with dichlorodihydrofluorescein diacetate (DCFH-DA). DCF is extracted by using porous polyaniline nanotubes (PPN) which have a large specific surface and pore volume which favor the adsorption capacity. Additional attractive features include an appropriate pore size distribution, hydrophobic surface, and electron-attracting groups which contribute to DCF adsorption. A variety of methods was applied to characterize the morphology of PPN. Under optimal conditions and by performing DCF in 0.08-1.0 µM concentrations, the correlation coefficient of the calibration plot is 0.999. The limits of detection for standard DCF solutions is 20 nM. Compared with commercial sorbents for solid-phase extraction (SPE) such as commercially available carbon or Welchrom® C18, the use of the new sorbent results in better retraction recovery (92%) and longer reuse times (30 times). Doxorubicin and X-ray radiation were used to externally stimulate the ROS production in HepG2 and Hela cells. ROS was stabled by DCFH-DA and quantified by DCF. Following SPE, DCF was detected by HPLC and the concentration ROS was calculated. Graphical abstract ᅟ.


Assuntos
Compostos de Anilina/química , Nanotubos/química , Espécies Reativas de Oxigênio/metabolismo , Extração em Fase Sólida/métodos , Adsorção , Cromatografia Líquida de Alta Pressão , Doxorrubicina/farmacologia , Fluorescência , Células HeLa , Células Hep G2 , Humanos , Porosidade , Propriedades de Superfície
16.
J Sep Sci ; 40(22): 4411-4419, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28898544

RESUMO

Packed cartridges have been widely used in solid-phase extraction. However, there are still some drawbacks, such as they are blocked easily and the method is time-consuming. In view of the advantages of monoliths, a monolithic extraction material has been directly synthesized in a glass syringe without any gap between the monolith and syringe inner wall. The monolithic syringe was modified with graphene oxide by loading graphene oxide dispersion onto it. The content of graphene oxide and the surface topography of the monolith have been evaluated by elemental analysis and scanning electron microscopy, respectively, which confirmed the successful modification. This prepared graphene oxide-modified monolithic syringe was directly used as a traditional solid-phase extraction cartridge. As expected, it shows good permeability and excellent capability for the extraction of quaternary ammonium alkaloids. The sample loading velocity (1-6 mL/min) does not affect the recovery. Under the optimal conditions, good linearities (R = 0.9992-0.9998) were obtained for five quaternary ammonium alkaloids, and the limits of detection and quantification were 0.5-1 and 1-2 µg/L, respectively. The proposed method was successfully applied for the analysis of quaternary ammonium alkaloids in Chinese patent medicine.


Assuntos
Alcaloides/isolamento & purificação , Compostos de Amônio/isolamento & purificação , Medicamentos de Ervas Chinesas/química , Grafite , Óxidos , Medicamentos sem Prescrição/química , Extração em Fase Sólida , Seringas
17.
J Sep Sci ; 38(8): 1326-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25655507

RESUMO

CdS nanoparticles coated on a stainless-steel wire for solid-phase microextraction was prepared. Scanning electron microscopy showed that the CdS nanoparticles clustered together to form a porous structure and X-ray diffraction confirmed that the CdS nanoparticles were the wurtzite phase. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined by the headspace method. The parameters of adsorption time, adsorption temperature, salt concentration, desorption time, and desorption temperature were investigated and optimized. For the method, wide linearity and low limits of detection from 5 to 15 ng/L were obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.2 and 12.6%, respectively. The enrichment factors were from 1155.6 to 3905.4, showing the fiber has good extraction capacity for polycyclic aromatic hydrocarbons. Moreover, the fiber can be used more than 50 times, exhibiting good stability. The established method was also used to analyze the polycyclic aromatic hydrocarbons in two real samples, and the recoveries from 82.7 to 114.2% further proved the reliability of the method.

18.
J Sep Sci ; 38(12): 2046-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25845702

RESUMO

A novel organic-silica hybrid monolith was prepared through the binding of histidine onto the surface of monolithic matrix for mixed-mode per aqueous and ion-exchange capillary electrochromatography. The imidazolium and amino groups on the surface of the monolithic stationary phase were used to generate an anodic electro-osmotic flow as well as to provide electrostatic interaction sites for the charged compounds at low pH. Typical per aqueous chromatographic behavior was observed in water-rich mobile phases. Various polar and hydrophilic analytes were selected to evaluate the characteristics and chromatographic performance of the obtained monolith. Under per aqueous conditions, the mixed-mode mechanism of hydrophobic and ion-exchange interactions was observed and the resultant monolithic column proved to be very versatile for the efficient separations of these polar and hydrophilic compounds (including amides, nucleosides and nucleotide bases, benzoic acid derivatives, and amino acids) in highly aqueous mobile phases. The successful applications suggested that the histidine-modified organic-silica hybrid monolithic column could offer a wide range of retention behaviors and flexible selectivities toward polar and hydrophilic compounds.

19.
J Sep Sci ; 38(15): 2700-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26012698

RESUMO

A new polyethylene glycol/graphene oxide composite material bonded on the surface of a stainless-steel wire was used for solid-phase microextraction. The layer-by-layer structure increased the adsorption sites of the novel fiber, which could facilitate the extraction of trace compounds. The polyethylene glycol/graphene oxide was characterized by Fourier transform infrared spectroscopy and elemental analysis, which verified that polyethylene glycol was successfully grafted onto the surface of graphene oxide. The performance of the polyethylene glycol/graphene oxide coated fiber was investigated for phenols and phthalate esters coupled with gas chromatography with flame ionization detection under the optimal extraction and desorption conditions, and the proposed method exhibited an excellent extraction capacity and high thermal stability. Wide linear ranges were obtained for the analytes with good correlation coefficients in the range of 0.9966-0.9994, and the detection limits of model compounds ranged from 0.003 to 0.025 µg/L. Furthermore, the as-prepared fiber was used to determine the model compounds in the water and soil samples and satisfactory results were obtained.

20.
Analyst ; 139(10): 2531-7, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24681764

RESUMO

In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 µg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).


Assuntos
Ácidos Carboxílicos/isolamento & purificação , Imidazóis/química , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Dióxido de Silício/química , Extração em Fase Sólida/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA