Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Hered ; 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850107

RESUMO

OBJECTIVES: Impairment of mitochondrial function caused by pathogenic mitochondrial DNA (mtDNA) mutations has been found to be associated with pre-eclampsia (PE). However, the underlying mechanism of PE remains poorly undetermined. The aim of this study is to evaluate the relationship between mitochondrial tRNAs (mt-tRNAs) variants and PE. MATERIAL AND METHODS: The mt-tRNAs variants in a cohort of 100 pregnant women with PE and 100 healthy subjects were examined by PCR-Sager sequencing. Moreover, the phylogenetic conservation analysis, mitochondrial haplogroup analysis, as well as pathogenicity scoring system were used to assess the potential pathogenicity of these tRNA variants. RESULTS: We identified five possible pathogenic mt-tRNA variants: tRNAPhe A608G, tRNAIle A4263G, tRNAAla T5587C, tRNALeu(CUN) G12294C and tRNAPro G15995A. We noticed that these variants were not detected in control subjects and occurred at the positions which were extremely conserved. Alternations in tRNAs structure caused by these variants may lead to the failures in tRNAs metabolism, which may subsequently may lead to the impairment of mitochondrial translation, as well as the respiratory chain functions. Thus, mt-tRNA variants may be involved in the pathogenesis of PE. CONCLUSIONS: Taken together, our data indicated that variants in mt-tRNA genes were the important contributors to PE; screening for mt-tRNA variants was recommended for early detection and prevention of PE.

2.
Technol Health Care ; 31(4): 1375-1383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36847034

RESUMO

BACKGROUND: The ABO blood group is closely related to clinical blood transfusion, transplantation, and neonatal hemolytic disease. It is also the most clinically significant blood group system in clinical blood transfusion. OBJECTIVE: The purpose of this paper is to review and analyze the clinical application of the ABO blood group. METHODS: The most common ABO blood group typing methods in clinical laboratories are hemagglutination test and microcolumn gel test, while genotype detection is mainly adopted in clinical identification of suspicious blood types. However, in some cases, the expression variation or absence of blood type antigens or antibodies, experimental techniques, physiology, disease, and other factors affect the accurate determination of blood types, which may lead to serious transfusion reactions. RESULTS: The mistakes could be reduced or even eliminated by strengthening training, selecting reasonable identification methods, and optimizing processes, thereby improving the overall identification level of the ABO blood group. ABO blood groups are also correlated with many diseases, such as COVID-19 and malignant tumors. Rh blood groups are determined by the RHD and RHCE homologous genes on chromosome 1 and are classified as Rh negative or positive according to the D antigen., the agglutination method is often used in clinical settings, while genetic and sequencing methods are often used in scientific research. CONCLUSION: Accurate ABO blood typing is a critical requirement for the safety and effectiveness of blood transfusion in clinical practice. Most studies were designed for investigating rare Rh blood group family, and there is a lack of research on the relationship between Rh blood groups and common diseases.


Assuntos
Tipagem e Reações Cruzadas Sanguíneas , COVID-19 , Recém-Nascido , Humanos , Sistema ABO de Grupos Sanguíneos/genética , Transfusão de Sangue , Genótipo
3.
Microorganisms ; 10(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296335

RESUMO

Mycorrhiza helper bacteria (MHB) play an important role in driving mycorrhizal formation. There are few reports on the relationship between bacteria and fruiting growths. Taking mycorrhizal rhizosphere soil from sporocarps of the S. luteus and non-mycorrhizal rhizosphere soil of the host plant (Larix gmelinii), we measured the bacterial community structure and diversity and chemical properties to clarify the effect of bacteria on fruiting-body formation. The bacterial diversity was significantly higher in mycorrhizal rhizosphere soil (p < 0.05) than that in non-mycorrhizal rhizosphere soil. The relative abundance of Burkholderia, Bradyrhizobium, Pseudomonas, and Rhizobium was significantly higher (p < 0.05) in mycorrhizal rhizosphere soil than in non-mycorrhizal rhizosphere soil. The soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), ammonium nitrogen (AN), available phosphorus (AP), available potassium (AK), and the activity of catalase, urease, and phosphatase in mycorrhizal rhizosphere soil were significantly higher (p < 0.05) than those in non-mycorrhizal rhizosphere soil. A redundancy analysis (RDA) showed that dominant bacteria are closely related to soil enzyme activity and physicochemical properties (p < 0.05). The boletus recruits a large number of bacteria around the plant roots that speed up nutrient transformation and increase the soil nutrient content, providing an important guarantee for mycelium culture and fruiting-body formation. These findings provide ideas for the nutritional supply of boletus sporocarps and lay the theoretical foundation for the efficient artificial cultivation of boletus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA