Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Molecules ; 25(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961811

RESUMO

Di-n-butyl phthalate (DBP) is an extensively used plasticizer. Most investigations on DBP have been concentrated on its environmental distribution and toxicity to humans. However, information on the effects of plasticizers on algal species is scarce. This study verified the impacts of endocrine disruptor di-n-butyl phthalate ester on microalga Chlorella vulgaris by approaches of proteomics and gene ontology. The algal acute biotoxicity results showed that the 24h-EC50 of DBP for C. vulgaris was 4.95 mg L-1, which caused a decrease in the chlorophyll a content and an increase in the DBP concentration of C. vulgaris. Proteomic analysis led to the identification of 1257 C. vulgaris proteins. Sixty-one more proteins showed increased expression, compared to proteins with decreased expression. This result illustrates that exposure to DBP generally enhances protein expression in C. vulgaris. GO annotation showed that both acetolactate synthase (ALS) and GDP-L-fucose synthase 2 (GER2) decreased more than 1.5-fold after exposure to DBP. These effects could inhibit both the valine biosynthetic process and the nucleotide-sugar metabolic process in C. vulgaris. The results of this study demonstrate that DBP could inhibit growth and cause significant changes to the biosynthesis-relevant proteins in C. vulgaris.


Assuntos
Chlorella vulgaris/efeitos dos fármacos , Dibutilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Proteoma/análise , Proteômica/métodos , Acetolactato Sintase/genética , Chlorella vulgaris/genética , Chlorella vulgaris/metabolismo , Clorofila A/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação para Baixo/efeitos dos fármacos , Ontologia Genética , Cetona Oxirredutases/genética , Espectrometria de Massas , Regulação para Cima/efeitos dos fármacos
2.
Molecules ; 25(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331471

RESUMO

Thermal stabilities of four major components (l-menthol, l-menthone, piperitone, and l-menthyl acetate) of Japanese mint essential oil were evaluated via subcritical water treatment. To improve experimental throughput for measuring compound stabilities, a small-scale subcritical water treatment method using ampoule bottles was developed and employed. A mixture of the four major components was treated in subcritical water at 180-240 °C for 5-60 min, and then analyzed by gas chromatography. The results indicated that the order of thermal resistance, from strongest to weakest, was: l-menthyl acetate, l-menthol, piperitone, and l-menthone. In individual treatments of mint flavor components, subsequent conversions of l-menthyl acetate to l-menthol, l-menthol to l-menthone, l-menthone to piperitone, and piperitone to thymol were observed in individual treatments at 240 °C for 60 min. As the mass balance between piperitone and thymol was low, the hydrothermal decomposition of the components was considered to have occurred intensely during, or after the conversion. These results explained the degradation of mint essential oil components under subcritical water conditions and provided the basis for optimizing the extraction conditions of mint essential oils using subcritical water.


Assuntos
Mentha/química , Óleos Voláteis/química , Monoterpenos Cicloexânicos/química , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Óleos de Plantas/química , Timol/química
3.
Environ Technol ; 35(1-4): 416-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600882

RESUMO

This study investigated the aerobic degradation ofbisphenol-A (BPA) and the derivatives bisphenol-B (BPB), bisphenol-F (BPF), tetrabromobisphenol-A (TBBPA), and tetrachlorobisphenol-A (TCBPA) in river sediment. The degradation rates of BPA and BPF were enhanced by adding brij 30, brij 35, rhamnolipid, surfactin, or crude enzyme; a higher degradation rate was observed with crude enzyme than with the other additives. The degradation rates of BPA and its derivatives (BPAs) in the sediment were BPF > BPA > BPB > TCBPA > TBBPA. Different BPAs affected the changes in the microbial community in the sediment. Sediment fractions with larger particle sizes demonstrated higher degradation rates. Different sediment particle sizes affected the changes in the microbial communities. Pseudomonas sp. may be the dominant bacteria in the process of degradation of BPAs in river sediment.


Assuntos
Bactérias Aeróbias/metabolismo , Compostos Benzidrílicos/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Fenóis/metabolismo , Rios/microbiologia , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Compostos Benzidrílicos/isolamento & purificação , Biodegradação Ambiental , Sedimentos Geológicos/análise , Tamanho da Partícula , Fenóis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
4.
One Health ; 18: 100757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38803321

RESUMO

Helicobacter species are potential zoonotic pathogens classified as either enterohepatic or gastric. Helicobacter infection can be transmitted through wastewater from households and livestock and through water from irrigation and streams. In this study, the distribution and source of Helicobacter species in the Donggang and Yenshui rivers, two natural water bodies with different characteristics, were analyzed. A total of 44 water samples were collected over the four seasons. The samples were subjected to Helicobacter 16 s rRNA gene PCR, followed by sequencing and comparison for identification and analysis. The detection rate of Helicobacter species in both rivers was 79.55%, with H. kayseriensis (10/35, 28.57%) being the most common species. Analysis of the environment around the sampling sites showed a high detection rate in the livestock-rich area, and the results of BLAST for species identification and comparison indicated feces as the contamination source. The area around the Donggang River was developed for animal husbandry, led to a high detection rate of Helicobacter species. Many Helicobacter species were identified to have a risk of zoonotic transmission, especially if the stream is used as a source of drinking, agricultural, or even aquacultural water. The high presence of Helicobacter species in natural water bodies suggests that wastewater treatment is an effective strategy to control pathogen spread. Therefore, investigation and monitoring of pathogens in wastewater are highly important. However, methods for the isolation and culture of Helicobacter species in natural waters have yet to be developed. Hence, future research should focus on developing such methods.

5.
Water Sci Technol ; 68(3): 695-704, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23925200

RESUMO

The main objective of this study is to evaluate the nitrogen assimilation and filtration characteristics of Chlorella vulgaris Beij. when treating domestic wastewaters. Chlorella could assimilate organic nitrogen, ammonia and nitrate in wastewater, and the mean cell residence time (MCRT) to achieve the maximum biomass content in a bioreactor was different for each individual nitrogen source used. The experimental results showed that using nitrate as the only nitrogen source was the most favorable for biomass growth. With ammonia and nitrate coexisting in the aquatic phase, Chlorella possibly utilized ammonia first, and this was unfavorable to subsequent biomass growth. Nitrifying bacteria in wastewaters significantly affected Chlorella growth as they possibly competed with Chlorella in assimilating ammonia and nitrate in domestic wastewater. In a submerged ultrafiltration (UF) membrane module, with an initial concentration of 850 mg/L of Chlorella, the optimized flux was 0.02 m(3)/(m(2)·h), and the filtration cycle was 30 min. A 'dual membrane bioreactor (MBR)' configuration using UF membranes for Chlorella incubation was proposed. MBR1 provides an environment with long MCRT for efficient nitrification. The converted nitrate is assimilated by Chlorella in MBR2 to sustain its growth. UF permeate from MBR1 is bacteria-free and does not affect the growth of Chlorella in MBR2. MCRT of Chlorella growth is controlled by the UF membrane of MBR2, providing the flexibility to adjust variations of nitrogen composition in the wastewater.


Assuntos
Chlorella vulgaris/química , Nitrogênio/isolamento & purificação , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Reatores Biológicos/microbiologia , Membranas Artificiais , Nitratos/química , Nitratos/isolamento & purificação , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/química
6.
Antibiotics (Basel) ; 12(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37508178

RESUMO

The intensive use of benzoic acid (BA), 4-hydroxybenzoic acid (HB), and dehydroacetate (DHA) as additives and preservatives in cosmetics and foods causes emerging environmental pollutions. Anthropogenic releases of BA, HB and DHA are primarily emissions into water and soil. However, few studies investigate the effects of BA, HB and DHA on microbial communities in freshwater river sediments. The aim of this study is to reveal the effects of BA, HB and DHA on microbial communities in freshwater river sediments. Tetracycline-, sulfamethoxazole- and preservative-resistant microbes were increased in the river sediments treated with BA, HB and DHA. The relative abundances of methanogen- and xenobiotic-degradation-associated microbial communities were also increased in the BA-, HB- and DHA-treated sediments. The relative abundance of four nitrogen cycle associated microbial groups (anammox, nitrogen fixation, denitrification, and dissimilatory nitrate reduction) were increased after the eighth week in the BA-, HB- and DHA-treated sediments. For the sulfur cycle, the relative abundance of thiosulfate oxidation associated microbial communities were increased after the eighth week in the BA-, HB- and DHA-treated sediments. Results of this study provide insight into the effects of BA, HB and DHA on antibiotic resistance, nitrogen cycle, sulfur cycle, drug resistance and methane production in freshwater aquatic environments.

7.
Front Microbiol ; 14: 1249167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029114

RESUMO

In Taiwan, the pesticides dimethomorph and imidacloprid are recommended for pest control in vineyards. Therefore, tank-mixing of these two pesticides is usually a routine practice before application. This study analyzed the influence of vineyard soil microbial flora under the recommended and high dosages (100 times the recommended dosage) of dimethomorph and imidacloprid. Individual and combined applications of pesticides were also tested through batches of soil incubation experiments. Four treatments-control (C), dimethomorph (DT), imidacloprid (IM), and mixed application of dimethomorph and imidacloprid (ID)-were used in the experimental design. From the soil metabolism, no significant reaction was observed after 2 months in the recommended dosage group, regardless of whether the pesticides were being applied individually or combined. For the high dosage, imidacloprid showed a higher effect than the co-exposure treatments, showing a possible prolonged effect after its repetitive application. From PCoA analysis, pesticide treatments altered the soil ecology after 2 months, and the effect of imidacloprid can be explicitly observed at high dosages. At the phylum level, Acidobacteria can indicate pesticide application around the recommended dosage. It was inhibited by ID on day 7 and was augmented by all pesticides on day 63. The effect of the recommended dosage of pesticide mixtures after 2 months of incubation was revealed in the minor families Gemmataceae and Pirellulaceae, while the high dosage treatments affected both the core and the minor families. Our findings verified the changes in the composition of microbial communities upon pesticide application, which would affect carbon, nitrogen, sulfur, phosphorous cycles, and contaminant removal ability within the vineyard.

8.
Bioresour Technol ; 387: 129590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532059

RESUMO

In this study, different types of lignocellulosic biomas were used as substrates for the conversion to 5-HMF via biphasic reaction system that is composed of a reaction phase (aqueous phase) and an extraction phase (organic phase) under the catalysis of various metal salts. Deep eutectic solvents (DESs), ionic liquid [BMIM]Cl, aqueous choline chloride, aqueous betaine hydrochloride, and ethylamine hydrochloride were used as the reaction phase in the combination of dimethyl sulfoxide (DMSO) as organic solvents. The highest yields of 5-HMF obtained from pineapple stems in reactions with DES were 40.98%, 37.26%, and 23.44% for ChCl:Lac, ChCl:OA, and EaCl:Lac, respectively. Moreover, the combination of dimethyl sulfoxide, betaine hydrochloride aqueous solution, and AlCl3·6H2O with the pineapple stem conversion system resulted in a maximum yield of 61.04% ± 0.55% of 5-HMF. This study also demonstrated that AlCl3·6H2O and betaine hydrochloride could be effectively reused four times, which indicates a green and effective process.


Assuntos
Betaína , Dimetil Sulfóxido , Biomassa , Solventes , Água
9.
Chemosphere ; 342: 140126, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690555

RESUMO

Biomass is an abundant and sustainable resource that can be converted into energy and chemicals. Therefore, the development of efficient methods for the conversion of biomass into platform intermediates is crucial. In this study, the one-pot conversion of sugars into 5-hydroxymethylfurfural (HMF) and furfural was achieved using the metal-organic framework combined with metal ions [MIL-101(Cr)] as a high-activity catalyst, and a deep eutectic solvent (choline chloride and lactic acid) as a green solvent. The optimal temperature, time, amount of catalyst used, and amount of deep eutectic solvent used were all determined. The highest HMF yield of 49.74% and furfural yield of 55.90% were obtained. The recyclability of the catalysts and deep eutectic solvent was also investigated. After three reaction runs, the HMF yield was still nearly 30.00%. Finally, the MIL-101(Cr) catalytic system was selected to study the kinetic mechanism underlying the conversion of glucose into HMF.


Assuntos
Furaldeído , Estruturas Metalorgânicas , Solventes , Açúcares , Solventes Eutéticos Profundos
10.
Front Microbiol ; 14: 1242217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260898

RESUMO

Land degradation is a major threat to ecosystem. Long-term conventional farming practices can lead to severe soil degradation and a decline in crop productivity, which are challenging for both local and global communities. This study was conducted to clarify the responses on soil physicochemical properties and microbial communities to changes in farming practices. Slope land orchards under three agricultural management practices-conventional farming (CF), organic farming (OF), and ecofriendly farming (EFF)-were included in this study. We found that soil carbon stock increased by 3.6 and 5.1 times in surface soils (0-30 cm) under EFF and OF treatments, respectively. EFF and OF significantly increased the contents of total nitrogen by 0.33-0.46 g/kg, ammonia-N by 3.0-7.3 g/kg, and microbial biomass carbon by 0.56-1.04 g/kg but reduced those of pH by 0.6 units at least, and available phosphorous by 104-114 mg/kg. The application of phosphorous-containing herbicides and chemical fertilizers might increase the contents of phosphorous and nitrate in CF soil. High abundances of Acidobacteria and Actinobacteria were observed in EFF and OF soils, likely because of phosphorous deficiency in these soils. The abundance of fungi in OF soil indicated that plants' demand for available soil phosphorous induced the fungus-mediated mineralization of organic phosphorous. High abundances of Gammaproteobacteria, Planctomycetes, Firmicutes, and Nitrospirae were observed in CF soil, possibly because of the regular use of herbicides containing phosphorous and chemical fertilizers containing high total nitrogen contents.

11.
Sci Total Environ ; 870: 162017, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36739020

RESUMO

The commonly observed inverse relationship between dissolved organic carbon (DOC) and nitrate (NO3-) concentrations in aquatic systems can be explained by stoichiometric and thermodynamic principles regulating microbial assimilation and dissimilation processes. However, the interactive effects of human activities and dissolved oxygen (DO) on the DOC and DIN (dissolved inorganic nitrogen, mainly composed of NO3--N and NH4+-N) relations are not well identified, particularly in subtropical small mountainous rivers (SMRs). Here, we investigated the exports and relations of DOC-DIN in 42 Taiwan SMRs under different anthropogenic disturbances. Results showed that the island-wide mean concentrations of the three solutes in streams are generally low, yet the abundant rainfall and persistent supply contrarily lead to disproportional high DOC and DIN yields. The inverse DOC-NO3--N relation does not appear under well­oxygenated conditions, regardless of low or high human disturbance. However, a significant inverse relationship between DOC-NO3--N would emerge in highly-disturbed watersheds under low-oxygenated conditions (mean annual DO <6.5 mg L-1), where excess N accumulates as NH4+-N rather than NO3--N. The controlling mechanism of DOC-DIN relations would shift from energetic constraints to redox constraints in low-oxygenated conditions. Although riverine concentrations of DOC, NO3--N, and NH4+-N could be elevated by human activities, the transition of DOC-DIN relation pattern is directly linked to DO availability. Understanding the mechanism that drives CN coupling is critical for assessing the ecosystem function in the delivery and retention of DOC and DIN in aquatic ecosystems.

12.
J Environ Monit ; 14(7): 1983-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22673540

RESUMO

The removal of the organic toxic chemicals di-n-butyl phthalate (DBP), di-2-ethyl hexyl phthalate (DEHP), nonylphenol (NP), and bisphenol-A (BPA) by laccase obtained from the spent mushroom compost (SMC) of the white rot fungi, Ganoderma lucidum, was investigated. The optimal conditions for the extraction of laccase from SMC required using sodium acetate buffer (pH 5.0, solid : solution ratio 1 : 5), and extraction over 3 h at 4 °C. The removal of NP was enhanced by adding CuSO(4) (1 mM), MnSO(4) (0.5 mM), tartaric acid (20 mM), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS; 1 mM), and 1-hydroxybenzotriazole (HBT; 20 mg L(-1)), with ABTS yielding a higher NP removal efficiency than the other additives. At a concentration of 2 mg L(-1), DBP, DEHP, NP, and BPA were almost entirely removed by laccase after incubation for 1 day. The removal efficiencies, in descending order of magnitude, were DBP > BPA > NP > DEHP. We believe that these findings could provide useful information for improving the efficiency of the removal of organic toxic chemicals in the environment.


Assuntos
Substâncias Perigosas/metabolismo , Reishi/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Substâncias Perigosas/análise , Lacase/metabolismo , Fenóis/análise , Fenóis/metabolismo , Ácidos Ftálicos/análise , Ácidos Ftálicos/metabolismo , Reishi/crescimento & desenvolvimento , Solo , Poluentes do Solo/análise
13.
Environ Pollut ; 272: 116009, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257150

RESUMO

Biochar has been proven as a soil amendment to improve soil environment. However, mechanistic understanding of biochar on soil physical properties and microbial community remains unclear. In this study, a wood biochar (WB), was incorporated into a highly weathered tropical soil, and after 1 year the in situ changes in soil properties and microbial community were evaluated. A field trial was conducted for application of compost, wood biochar, and polyacrylamide. Microstructure and morphological features of the soils were characterized through 3D X-ray microscopy and polarized microscopy. Soil microbial communities were identified through next-generation sequencing (NGS). After incubation, the number of pores and connection throats between the pores of biochar treated soil increased by 3.8 and 7.2 times, respectively, compared to the control. According to NGS results, most sequences belonged to Anaerolinea thermolimosa, Caldithrix palaeochoryensis, Chthoniobacter flavus, and Cohnella soli. Canonical correlation analysis (CCA) further demonstrated that the microbial community structure was determined by inorganic N (IN), available P (AP), pH, soil organic C (SOC), porosity, bulk density (BD), and aggregate stability. The treatments with co-application of biochar and compost facilitated the dominance of Cal. palaeochoryensis, Cht. flavus, and Coh. soli, all of which promoted organic matter decomposition and ammonia oxidation in the soil. The apparent increases in IN, AP, porosity, and SOC caused by the addition of biochar and compost may be the proponents of changes in soil microbial communities. The co-application of compost and biochar may be a suitable strategy for real world biochar incorporation in highly weathered soil.


Assuntos
Carvão Vegetal , Solo , Bacillales , Bactérias , Chloroflexi , Microbiologia do Solo , Verrucomicrobia
14.
Antibiotics (Basel) ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065381

RESUMO

This study aimed to investigate the effects of multi-drug-resistant organism (MDRO) infection and other factors on the length of hospital stay (LOS) of patients in the respiratory care ward (RCW) of a regional hospital in Taiwan. In this retrospective study, we collected cases from MDRO-infected patients in the RCW from January 2016 to March 2020. The RCW comprises 13 beds in total. There were 106 infected patients, of which 42 were in the case group (infected with MDROs) and 64 were in the control group (not infected with MDROs). Clinical specimens were inoculated in a selective medium to isolate the pathogenic bacteria by standard procedures. The results showed the main factors affecting the LOS were: patients with MDRO infection, patients discharged from the RCW, and patients who underwent catheterization. The LOS of patients infected with MDROs was significantly longer than that of patients without MDRO infection (ß = 0.55, 95% CI = 0.02-1.09), with the case group and the control group being 479.8 ± 546.5 and 307.3 ± 436.2 days, respectively. Infection with carbapenem-resistant Pseudomonas aeruginosa (CRPA) was associated with a longer LOS than other MDRO strains. These findings have important implications for infection control in RCW and in better tracking the health of patients.

15.
J Environ Sci Health B ; 45(5): 366-71, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20512726

RESUMO

This study investigated the effects of various culture treatments on di-n-butyl phthalate (DBP) degradation and the survival conditions of DBP-degrading bacterial strains in a soil microcosm. In the previous study, a DBP-degrading strain was isolated from activated sludge and identified by 16S rRNA as Deinococcus radiodurans. In this study, we added D. radiodurans into a soil microcosm and analyzed the structure of the whole bacterial community of the soil using a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique. Meanwhile, the optimal conditions for DBP degradation were assessed by varying the temperature and initial pH of the culture, and by adding yeast extract and surfactants. The results show that the optimal conditions for DBP degradation in soil are a temperature of 35 degrees C, a pH of 7, and the addition of Triton X-100 and yeast extract. Furthermore, the addition of D. radiodurans can also enhance DBP degradation in soil. The PCR-DGGE analysis showed that D. radiodurans could survive in the soil microcosm through 24 days of incubation. We hope that these findings may provide some useful information about the remediation of DBP in our environment.


Assuntos
Deinococcus/metabolismo , Dibutilftalato/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Deinococcus/crescimento & desenvolvimento , Dibutilftalato/química , Eletroforese em Gel de Poliacrilamida , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Reação em Cadeia da Polimerase , Tensoativos/farmacologia , Temperatura , Fatores de Tempo , Leveduras/fisiologia
16.
Freshw Biol ; 65(11): 1973-1988, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33288968

RESUMO

Bamboo, as a pioneer vegetation, often forms forests on bare lands after catastrophic landslides. Compared to evergreen forest soil, bamboo forest soil is much more labile, with a higher percentage of microbially derived organic carbon (OC), lower molecular weight, and lower humic acid content. We hypothesised that different terrigenous organic matter (tOM) sources with varying lability and phosphorus (P) availability select for bacterioplankton with distinct metabolic pathways.We incubated natural bacterioplankton assemblages with tOM leached from bamboo forest soil (BOM) and evergreen forest soil (EOM) and compared these to a lake water control. To test if microbial metabolism would be limited by OC or P availability of each tOM treatment, we used acetate as an extra labile OC source and phosphate as an inorganic P source. Bacterial metabolism was measured by analysing respiration via O2 consumption and production via tritiated thymidine (TdR) assimilation.Bacterioplankton metabolism is limited by the availability of P in BOM substrates. When using BOM, bacteria had higher enzymatic activities for phosphatase. The nutrients required for bacterial biomass seemed to be derived from organic matter. Under BOM treatment, bacterial production (BP) (0.92 ± 0.13 µg C L-1 hr-1) and cell specific TdR assimilation rates (0.015 ± 0.002 10-18 M TdR cell-1 hr-1) were low. Adding P enhanced BP (BOM+P 1.52 ± 0.31 and BOM+C+P 2.25 ± 0.37 µg C L-1 hr-1) while acetate addition had no significant effect on BOM treatment.This indicated that the bacteria switched to using added inorganic P to respire a P-limited BOM substrate, which increased total BP and abundance, resulting in even more active respiration and lower growth efficiency. We also found higher activities for chitin-degrading enzyme ß-N-acetylglucosaminidase, which is associated with N mining from aminosaccharides.Microbes using EOM, however, did not change metabolic strategies with additional acetate or/and inorganic P. This is due to higher concentrations of organic P in EOM substrates and the presence of inorganic N in the EOM leachates an alternative nutrient source. Bacteria produced ß-glucosidase and leucyl-aminopeptidase in order to utilise the humic substances, which sustained greater bacterial abundance, higher BP (2.64 ± 0.39 µg C L-1 hr-1), and lower cell-specific respiration. This yielded a much higher bacterial growth efficiency (15 ± 9.2%) than the lake water control.Our study demonstrated the aquatic metabolic discrepancy between tOM of different forest types. Bacterioplankton in BOM and EOM exhibit distinct metabolic responses. Bacterial metabolic strategy when using BOM implied that the supposedly stabilised biomass OM might be efficiently used by aquatic bacterioplankton. As the labile and nutrient-deficient BOM is more susceptible to the influence of additional nutrients, fertiliser residues in bamboo forest catchments might have a stronger effect on aquatic bacterial metabolic pathways. Thus, it is important to take tOM differences into consideration when building models to estimate soil carbon turnover rates along a terrestrial-aquatic continuum.

18.
Artigo em Inglês | MEDLINE | ID: mdl-30925662

RESUMO

This study evaluated the prevalence of clinical multidrug-resistant organisms (MDROs) and analyzed correlations between MDROs and patient characteristics in a regional teaching hospital of Taiwan. A retrospective comparative case-control study was conducted from January 2016 to August 2018 by collecting data from 486 hospitalized and non-hospitalized patients (M = 286, F = 200), including patient gender and age, microbial species, and antibiotic susceptibility. The results indicated that at least one MDRO was isolated from 5.3⁻6.3% of patients (p < 0.05), with an average age of 61.08 years. Of the MDROs strains, vancomycin-resistant enterococcus and carbapenem-resistant acinetobacter baumannii increased annually (p < 0.002 and p < 0.012, respectively). Three factors of age (over 60 years), treatment in an intensive care unit (ICU), and specimen category were statistically significant (p < 0.039, p < 0.001 and p < 0.001, respectively) and indicated that elderly patients in an ICU have a higher risk of being infected by MDROs. The outpatients infected by methicillin-resistant staphylococcus aureus (MRSA) were more frequent than inpatients, implying the existence of community-acquired MRSA strains. The results of this study could provide valuable information for the detection and colonization of multidrug-resistant organisms in hospital infection control systems.


Assuntos
Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla , Hospitais de Ensino/estatística & dados numéricos , Acinetobacter baumannii/isolamento & purificação , Fatores Etários , Idoso , Estudos de Casos e Controles , Infecção Hospitalar/epidemiologia , Enterococcus/isolamento & purificação , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores Sexuais , Taiwan/epidemiologia
19.
Hydrol Earth Syst Sci ; 22(12): 6579-6590, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31105411

RESUMO

Transport of riverine dissolved carbon (including DOC and DIC) is a crucial process linking terrestrial and aquatic C reservoirs, but has rarely been examined in subtropical small mountainous rivers (SMRs). This study monitored DOC and DIC concentrations on a biweekly basis during non-event flow periods and at 3 h intervals during two typhoon events in three SMRs in southwestern Taiwan between January 2014 and August 2016. Two models, HBV (the Hydrologiska Byråns Vattenbalansavdelning model) and a three-endmember mixing model, were applied to determine the quantities of DOC and DIC transport from different flow paths. The results show that the annual DOC and DIC fluxes were 2.7-4.8 and 48.4-54.3 t C km-2 yr-1, respectively, which were approx. 2 and 20 times higher than the global mean of 1.4 and 2.6 t C km-2 yr-1, respectively. The DIC / DOC ratio was 14.08, which is much higher than the mean of large rivers worldwide (1.86), and indicates the high rates of chemical weathering in this region. The two typhoons contributed 12%-14% of the annual streamflow in only 3 days (about 1.0% of the annual time), whereas 15.0%-23.5% and 9.2%-12.6% of the annual DOC and DIC flux, respectively, suggested that typhoons play a more important role in DOC transport than DIC transport. The end-member mixing model suggested that DOC and DIC export was mainly from surface runoff and deep groundwater, respectively. The unique patterns seen in Taiwan SMRs characterized by high dissolved carbon flux, high DIC / DOC ratio, and large transport by intense storms should be taken into consideration when estimating global carbon budgets.

20.
Environ Sci Pollut Res Int ; 25(26): 25715-25725, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28573558

RESUMO

To mitigate food shortage due to global warming, developing sustainable management practices to stabilize soil organic matter (SOM) and sequester more carbon (C) in the cultivated soils is necessary, particularly in subtropical and tropical areas. A short-term (56 days) incubation experiment was conducted to evaluate the influences of rice husk biochar (RHB) and manure compost (MC) application on C mineralization and nitrogen (N) immobilization in a sandy loam soil. The RHB was separately incorporated into the soil at application rates of 2 and 4% (w/w) either with or without 1% (w/w) compost. Our results displayed that macroaggregates (≥2 mm) were obviously increased by 11% in soil amended with RHB + MC at the end of incubation. In addition, the experimental results presented that the C mineralization of the soil rapidly increased during the first week of incubation. However, the co-application of compost with biochar (RHB + MC) revealed that CO2 emission was significantly decreased by 13-20% compared to the soil with only MC. In addition, the mineralized N in the soil was lower in RHB + MC-amended soil simultaneously than only MC-amended soil, indicating that biochar addition induced N immobilization. The physical protection of compost by its occlusion into aggregates or adsorption on surface of RHB as proved by the micromorphological observation was the main reason for lower C and N mineralization in soil amended with RHB + MC. Overall results revealed that RHB + MC treatment can decrease the decomposition of compost and sequester more C in the tropical agricultural soils.


Assuntos
Carbono/química , Carvão Vegetal , Compostagem , Nitrogênio/química , Solo , Agricultura , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA