RESUMO
Lung cancer is a leading cause of death globally, with lung adenocarcinoma being the most common subtype. Despite advancements in targeted therapy, drug resistance remains a major challenge. This study investigated the impact of Bacillus coagulans on drug resistance in lung adenocarcinoma cells. The cells were pretreated with B. coagulans culture filtrate (BCCF), and functional assays were performed, including cell proliferation, cell cycle, apoptosis, and immunofluorescence staining. Results showed that BCCF induced cell cycle arrest at the S phase, reducing cell proliferation and suppressing drug resistance marker P-glycoprotein expression in BCCF-treated resistant cells rather than BCCF-treated control cells. Moreover, drug-resistant cells exhibited the ability for epithelial-mesenchymal transition, which could contribute to their necrosis through the iron-mediated cell death pathway upon BCCF treatment. Proteomic analysis identified downregulation of DNA mismatch repair protein PMS2 after BCCF treatment. These findings suggest that B. coagulans may modulate the DNA repair pathway, influencing drug resistance in lung adenocarcinoma cells. In conclusion, this study highlights the potential impact of B. coagulans on drug-resistant lung adenocarcinoma cells. Further investigation and understanding of the regulatory mechanisms by which B. coagulans modulates drug resistance in lung adenocarcinoma can aid in the development of more effective treatment strategies to improve the prognosis of lung cancer patients.
RESUMO
PURPOSE: The transition from medical student to practicing physician affects the complex processes of professional identity formation and professionalism, which have a lasting effect on the physician's career development. This study explored two different transitional processes of medical students in Taiwan, the associated rituals during this transitional period (the 'liminal phase') and their effect on the formation of professional identity. METHOD: Using snowball sampling, we recruited 13 medical students from two training systems: six from the traditional postgraduate year programme and seven from the accelerated postgraduate year (A-PGY) programme. Semi-structured interviews were thematically analysed to identify significant themes that encapsulated trainees' experiences. A consistent and mutually confirmed discussion ensured the identification of robust recurring themes. RESULTS: A comparative analysis of the two training modalities provided critical insights into the relative impact of the training dynamics. The A-PGY cohort, subjected to an altered 'incorporation' ritual, encountered an influx of unexpected symbolic social power, complicating their transformation within the liminal phase. Without a defined internship like in the PGY system, A-PGY trainees exhibited confusion and inconsistencies in professional identity formation marked by conflicting internal and external perceptions. This ambiguity affected their clinical training, social integration and overall development of professionalism. The absence of a structured, sequential liminal phase increased conflict and diminished motivation, culminating in an incomplete self-crafting journey for A-PGY trainees. CONCLUSIONS: This study highlights the impact of the well-sequenced implementation of rituals in liminality on professional identity formation. A good transition training programme for medical students should compass sequential rituals in the liminal phase, including clear starting and ending points, supervision by seniors, guided reflection and plenty of opportunities for observation and imitation in context. Optimal training and pivotal elements in a medical training system warrant delicate design and further research when developing and changing the structure of the training programme.
RESUMO
Liver metabolic syndrome, which involves impaired hepatic glycogen synthesis, is persistently increased by exposure to environmental pollutants. Most studies have investigated the pathogenesis of liver damage caused by single metal species or pure organics. However, under normal circumstances, the pollutants that we are exposed to are usually chemical mixtures that accumulate over time. Sediments are long-term repositories for environmental pollutants due to their environmental cycles, which make them good samples for evaluating the effect of environmental pollutants on the liver via bioaccumulation. This study aimed to clarify the effects of sediment pollutants on liver damage. Our results indicate that industrial wastewater sediment (downstream) is more cytotoxic than sediments from other zones. Downstream sediment extract (DSE) causes hepatotoxicity, stimulates reactive oxygen species (ROS) generation, triggers mitochondrial dysfunction, induces cell apoptosis, and results in the release of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) proteins. Additionally, to elucidate the underlying mechanism by which sediment pollutants disturb hepatic glycogen synthesis, we investigated the effects of different sediment samples from different pollution situations on glycogen synthesis in liver cell lines. It was found that DSE induced multiple severe impairments in liver cells, and disturbed glycogen synthesis more than under other conditions. These impairments include decreased hepatic glycogen synthesis via inhibition and insulin receptor substrate 1 (IRS-1) /AKT /glycogen synthase kinase3ß (GSK3ß)-mediated glycogen synthase (GYS) inactivation. To our knowledge, this study provides the first detailed evidence of in vitro sediment-accumulated toxicity that interferes with liver glycogen synthesis, leading to hepatic cell damage through apoptosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Poluentes Ambientais , Humanos , Glicogênio Hepático/metabolismo , Glicogênio Hepático/farmacologia , Poluentes Ambientais/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Sintase/farmacologia , Fígado , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismoRESUMO
Sonogenetics is a promising strategy allowing the noninvasive and selective activation of targeted neurons in deep brain regions; nevertheless, its therapeutic outcome for neurodegeneration diseases that need long-term treatment remains to be verified. We previously enhanced the ultrasound (US) sensitivity of targeted cells by genetic modification with an engineered auditory-sensing protein, mPrestin (N7T, N308S). In this study, we expressed mPrestin in the dopaminergic neurons of the substantia nigra in Parkinson's disease (PD) mice and used 0.5 MHz US for repeated and localized brain stimulation. The mPrestin expression in dopaminergic neurons persisted for at least 56 days after a single shot of adeno-associated virus, suggesting that the period of expression was long enough for US treatment in mice. Compared to untreated mice, US stimulation ameliorated the dopaminergic neurodegeneration 10-fold and mitigated the PD symptoms of the mice 4-fold, suggesting that this sonogenetic strategy has the clinical potential to treat neurodegenerative diseases.
Assuntos
Doença de Parkinson , Animais , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/genética , Doença de Parkinson/terapia , Substância NegraRESUMO
Antrodia cinnamomea (AC) is a nutraceutical fungus and studies have suggested that AC has the potential to prevent or alleviate diseases. However, little is known about the AC-induced phenotypes on the intestine-liver axis and gut microbial alterations. Here, we performed two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-Biotyper to elaborate the AC-induced phenotypes on the intestine-liver axis and gut microbial distribution of C57BL/6 mice. The experimental outcomes showed that the hepatic density may increase by elevating hepatic redox regulation, lipid degradation and glycolysis-related proteins and alleviating cholesterol biosynthesis and transport-related proteins in C57BL/6 mice with AC treatment. Moreover, AC facilitates intestinal glycolysis, TCA cycle, redox and cytoskeleton regulation-related proteins, but also reduces intestinal vesicle transport-related proteins in C57BL/6 mice. However, the body weight, GTT, daily food/water intake, and fecal/urine weight were unaffected by AC supplementation in C57BL/6 mice. Notably, the C57BL/6-AC mice had a higher gut microbial abundance of Alistipes shahii (AS) than C57BL/6-Ctrl mice. In summary, the AC treatment affects intestinal permeability by regulating redox and cytoskeleton-related proteins and elevates the gut microbial abundance of AS in C57BL/6 mice that might be associated with increasing hepatic density and metabolism-related proteins of the liver in C57BL/6 mice. Our study provides an insight into the mechanisms of AC-induced phenotypes and a comprehensive assessment of AC's nutraceutical effect in C57BL/6 mice.
Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Polyporales , Proteoma/metabolismo , Animais , Hepatócitos/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BLRESUMO
More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.
Assuntos
Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Uridina Difosfato Glucose Desidrogenase/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Polimerização , Proteômica , RNA Interferente Pequeno/metabolismo , Cicatrização , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five-year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3-I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3-I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3-I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, vimentin and vinculin was increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.
Assuntos
Proliferação de Células/genética , Proteínas de Membrana/genética , Neoplasias Bucais/genética , Proteínas de Neoplasias/genética , Receptores de Progesterona/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Xenoenxertos , Humanos , Camundongos , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , ProteômicaRESUMO
Oral microbes are a contributing factor to hyperglycemia by inducing an increase in insulin resistance resulting in uncontrolled blood glucose levels. However, the relationship between the distribution of oral flora and hyperglycemia is still controversial. Combining the power of MALDI-Biotyper with anaerobic bacterial culture, this study explores the correlation between anaerobic bacteria in the oral cavity and blood glucose levels. The results demonstrated that altered blood glucose levels contributed to a varied bacterial distribution in the oral cavity. Specifically, Veillonella spp. and Prevotella spp. were identified in a higher proportion in people with elevated blood glucose levels. Six bacterial species identified in this study (Prevotella melaninogenica, Campylobacter rectus, Streptococcus gordonii, Streptococcus mitis, Streptococcus salivarius, and Veillonella parvula) not only demonstrated a positive association with higher blood glucose levels, but also likely contribute to the development of the condition. The data demonstrated MALDI-TOF MS to be a simpler, faster, and more economical clinical identification tool that provides clarity and depth to the research on blood glucose and oral microbiota.
Assuntos
Gengiva/microbiologia , Hiperglicemia/microbiologia , Microbiota , Saliva/microbiologia , Adulto , Idoso , Bactérias Anaeróbias , Glicemia/análise , Campylobacter rectus , Feminino , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Prevotella/metabolismo , Prevotella melaninogenica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptococcus gordonii , Streptococcus mitis , Streptococcus salivarius , Veillonella/metabolismoRESUMO
A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. Retinal ganglion cells (RGCs) are believed to be important cells affected in the pathogenesis of diabetic retinopathy. Transforming growth factor-beta (TGF-ß) is a neuroprotective protein that helps to withstand various neuronal injuries. To investigate the potential roles and regulatory mechanisms of TGF-ß in hyperglycemia-triggered damage of RGCs in vitro, we established RGCs in 5.5, 25, 50, and 100 mM D-glucose supplemented media and focused on the TGF-ß-related oxidative stress pathway in combination with hydrogen peroxide (H2O2). Functional experiments showed that TGF-ß1/2 protein expression was upregulated in RGCs with hyperglycemia. The knockdown of TGF-ß enhanced the accumulation of reactive oxygen species (ROS), inhibited the cell proliferation rate, and reduced glutathione content in hyperglycemia. Furthermore, the results showed that the TGF-ß-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as aldehyde dehydrogenase 3A1 (ALDH3A1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), and hypoxia-inducible factor (HIF-1α). Summarizing, our results demonstrated that TGF-ß keeps RGCs from hyperglycemia-triggered harm by promoting the activation of the antioxidant pathway, suggesting a potential anti-diabetic therapy for the treatment of diabetic retinopathy.
Assuntos
Estresse Oxidativo/fisiologia , Células Ganglionares da Retina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/fisiologia , Fatores de Crescimento Transformadores/metabolismoRESUMO
With the concept of precision medicine, combining multiple molecular-targeting therapies has brought new approaches to current cancer treatments. Malfunction of the tumor suppressor protein, p53 is a universal hallmark in human cancers. Under normal conditions, p53 is degraded through an ubiquitin-proteosome pathway regulated by its negative regulator, MDM2. In contrast, cellular stress such as DNA damage will activate p53 to carry out DNA repair, cell cycle arrest, and apoptosis. In this study, we focused on ovarian carcinoma with high EGFR and MDM2 overexpression rate. We assessed the effects of combined inhibition by MDM2 (JNJ-26854165) and EGFR (gefitinib) inhibitors on various ovarian cell lines to determine the importance of these two molecular targets on cell proliferation. We then used a proteomic strategy to investigate the relationship between MDM2 and EGFR inhibition to explore the underlying mechanisms of how their combined signaling blockades work together to exert cooperative inhibition. Our results demonstrated that all four cell lines were sensitive to both individual and combined, MDM2 and EGFR inhibition. The proteomic analysis also showed that gefitinib/JNJ-treated CAOV3 cells exhibited downregulation of proteins involved in nucleotide biosynthesis such as nucleoside diphosphate kinase B (NME2). In conclusion, our study showed that the combined treatment with JNJ and gefitinib exerted synergistic inhibition on cell proliferation, thereby suggesting the potential application of combining MDM2 inhibitors with EGFR inhibitors for enhancing efficacy in ovarian cancer treatment.
Assuntos
Antineoplásicos/farmacologia , Gefitinibe/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Triptaminas/farmacologia , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Gefitinibe/administração & dosagem , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteoma/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Triptaminas/administração & dosagemRESUMO
Glaucoma is a group of eye diseases that can cause vision loss and optical nerve damage. To investigate the protein expression alterations in various intraocular tissues (i.e., the cornea, conjunctiva, uvea, retina, and sclera) during ischemia-reperfusion (IR) injury, this study performed a proteomic analysis to qualitatively investigate such alterations resulting from acute glaucoma. The IR injury model combined with the proteomic analysis approach of two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to monitor the protein expression alterations in two groups of specimens (an IR injury group and a control group). The analysis results revealed 221 unique differentially expressed proteins of a total of 1481 proteins in the cornea between the two groups. In addition, 97 of 1206 conjunctival proteins, 90 of 1354 uveal proteins, 61 of 1180 scleral proteins, and 37 of 1204 retinal proteins were differentially expressed. These findings imply that different ocular tissues have different tolerances against IR injury. To sum up, this study utilized the acute glaucoma model combined with 2D-DIGE and MALDI-TOF MS to investigate the IR injury affected protein expression on various ocular tissues, and based on the ratio of protein expression alterations, the alterations in the ocular tissues were in the following order: the cornea, conjunctiva, uvea, sclera, and retina.
Assuntos
Glaucoma/etiologia , Glaucoma/metabolismo , Proteoma , Proteômica , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , Doença Aguda , Animais , Túnica Conjuntiva/metabolismo , Córnea/metabolismo , Modelos Animais de Doenças , Proteômica/métodos , Ratos , Reprodutibilidade dos Testes , Retina/metabolismo , Esclera/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial BidimensionalRESUMO
Drug resistance is one of the major causes of cancer chemotherapy failure. In the current study, we used a pair of lung adenocarcinoma cell lines, A549 and the pemetrexed-resistant A549/PEM cells, as a model to monitor resistance-dependent cellular responses and identify potential therapeutic targets. By means of 2D differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), we investigated the global protein expression alterations induced by pemetrexed treatment and resistance. The proteomic result revealed that pemetrexed exposure obviously altered the expression of 81 proteins in the A549 cells, whereas no significant response was observed in the similarly treated A549/PEM cells, hence implying an association between these proteins and the drug-specific response. Moreover, 72 proteins including flavin reductase and calreticulin demonstrated differential expression between the A549 and A549/PEM cells, indicating baseline resistance. Additional tests employed siRNA silencing, protein overexpression, cell viability analysis, and analysis of apoptosis to examine and confirm the potency of flavin reductase and calreticulin proteins in the development of pemetrexed resistance. In summary, by using a proteomic approach, we identified numerous proteins, including flavin reductase and calreticulin, involved in pemetrexed drug resistance-developing mechanisms. Our results provide useful diagnostic markers and therapeutic candidates for pemetrexed-resistant lung cancer treatment.
Assuntos
Antineoplásicos/farmacologia , Calreticulina/isolamento & purificação , FMN Redutase/isolamento & purificação , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Pemetrexede/farmacologia , Proteoma/isolamento & purificação , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Apoptose/efeitos dos fármacos , Calreticulina/genética , Calreticulina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Eletroforese em Gel Bidimensional , FMN Redutase/genética , FMN Redutase/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
According to the 2022 cancer statistics of the World Health Organization, lung cancer ranks among the top ten causes of death, with lung adenocarcinoma being the most prevalent type. Despite significant advancements in lung cancer therapeutics, many clinical limitations remain, primarily due to the development of drug resistance. The present study investigated the effects of pemetrexed on the drug resistance mechanisms in human lung adenocarcinoma and its association with progesterone receptor membrane component 1 (PGRMC1) expression. Given that KRAS-mutant lung adenocarcinoma cell lines (e.g., A549) exhibit a high folate synthesis activity, pemetrexed, which is structurally similar to folate, was selected as the therapeutic drug. The present study used a lung adenocarcinoma cell line (A549) and established a drug-resistant lung adenocarcinoma cell line (A549/PEM). The findings demonstrated that PGRMC1 expression was elevated in the A549/PEM cells. It has been hypothesized that PGRMC1 regulates iron absorption through heme binding, resulting in a preference for iron-related cell death pathways (ferroptosis). Our findings indicate that drug-resistant lung adenocarcinoma cells with high PGRMC1 levels exhibit elevated antioxidant activity on the cell membrane and increased reliance on iron-dependent cell death pathways. This suggests a correlation between PGRMC1 and pemetrexed-induced iron-dependent cell death. Our study contributes to the development of more effective therapeutic strategies to improve the prognosis of patients with lung adenocarcinoma, particularly those facing drug resistance challenges.
Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Proteínas de Membrana , Pemetrexede , Receptores de Progesterona , Humanos , Pemetrexede/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacosRESUMO
Helicobacter pylori infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, H. pylori employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion. Here, we report that key adhesins AlpA/B and BabA/B in H. pylori are modified by glycans and display a two-step molecular weight upshift pattern from the cytoplasm to the inner membrane and from the inner membrane to the outer membrane. Nevertheless, this upshift pattern is missing when the expression of some enzymes related to lipopolysaccharide (LPS) biosynthesis, including the LPS O-antigen assembly and ligation enzymes WecA, Wzk, and WaaL, is disrupted, indicating that the underlying mechanisms and the involved enzymes for the adhesin glycosylation are partially shared with the LPS biosynthesis. Loss of the adhesin glycosylation not only reduces the protease resistance and the stability of the tested adhesins but also changes the adhesin-binding ability. In addition, mutations in the LPS biosynthesis cause a significant reduction in bacterial adhesion in the in vitro cell-line model. The current findings reveal that H. pylori employs a general protein glycosylation system related to LPS biosynthesis for adhesin modification and its biological significance. The enzymes required for adhesin glycosylation rather than the adhesins themselves are potentially better drug targets for preventing or treating H. pylori infection.
Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Glicosilação , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Lipopolissacarídeos/metabolismo , Antígenos O/metabolismo , Peptídeo Hidrolases/metabolismoRESUMO
Cancer metastasis is one of most main causes of failure in cancer treatment. Nonetheless, more than half of oral cancer patients were diagnosed as advanced oral cancer with dramatically decreased 5-year survival rate to lower than 20%, while the stages become more advanced. In order to improve oral cancer treatment, the identification of cancer metastatic biomarkers and mechanisms is critical. In the current study, two pairs of oral squamous cell carcinoma lines, OC3/C9, and invasive OC3-I5/C9-I5were used as model systems to investigate invasive mechanism as well as to identify potential therapy-associated targets. Based on our previous proteomic analysis, insulin-like growth factor-binding protein 2 (IGFBP-2) was reported participating in oral cancer metastasis. Subsequent studies have applied interference RNA as well as recombinant protein techniques to confirm the roles of IGFBP-2 in oral cancer metastasis and examine their potency in regulating invasion as well as the mechanism IGFBP-2 involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, Snail1, SIP1, profilin, vimentin, uPA and MMP9 were increased in both OC3-I5 and C9-I5 compared to OC3 and C9 cells, while E-cadherin expression was down-regulated in the OC3-I5 and C9-I5 cells. Moreover, IGFBP-2 is shown to affect not only migration and invasion but also wound healing ability and cell proliferation. Our results also revealed that uPA is a downstream target of IGFBP-2 to intermediate oral cancer metastasis. To sum up, the current studies indicated that elevated IGFBP-2 is strongly correlated with oral cancer metastasis and progression, and that it could potentially serve as a prognostic biomarker as well as an innovative target for the treatment of oral cancer invasion.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/secundário , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Bucais/patologia , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Caderinas/genética , Caderinas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Movimento Celular , Proliferação de Células , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Células Tumorais CultivadasRESUMO
Oxidative stress generated by reactive oxygen species (ROS) plays a critical role in the pathomechanism of glaucoma, which is a multifactorial blinding disease that may cause irreversible damage within human trabecular meshwork cells (HTMCs). It is known that the transforming growth factor-ß (TGF-ß) signaling pathway is an important component of oxidative stress-induced damage related to extracellular matrix (ECM) fibrosis and activates cell antioxidative mechanisms. To elucidate the dual potential roles and regulatory mechanisms of TGF-ß in effects on HTMCs, we established an in vitro oxidative model using hydrogen peroxide (H2O2) and further focused on TGF-ß-related oxidative stress pathways and the related signal transduction. Via a series of cell functional qualitative analyses to detect related protein level alterations and cell fibrosis status, we illustrated the role of TGF-ß1 and TGF-ß2 in oxidative stress-induced injury by shTGF-ß1 and shTGF-ß2 knockdown or added recombinant human TGF-ß1 protein (rhTGF-ß1). The results of protein level showed that p38 MAPK, TGF-ß, and its related SMAD family were activated after H2O2 stimulation. Cell functional assays showed that HTMCs with H2O2 exposure duration had a more irregular actin architecture compared to normal TM cells. Data with rhTGF-ß1 (1 ng/mL) pretreatment reduced the cell apoptosis rate and amount of reactive oxygen species (ROS), while it also enhanced survival. Furthermore, TGF-ß1 and TGF-ß2 in terms of antioxidant signaling were related to the activation of collagen I and laminin, which are fibrosis-response proteins. Succinctly, our study demonstrated that low concentrations of TGF-ß1 (1 ng/mL) preserves HTMCs from free radical-mediated injury by p-p38 MAPK level and p-AKT signaling balance, presenting a signaling transduction mechanism of TGF-ß1 in HTMC oxidative stress-related therapies.
RESUMO
In this study, we aimed to identify the cultivatable oral anaerobic bacterial distribution in oral cavity by MALDI-TOF Biotyper. The bacterial distribution of three groups, including subjects with/without periodontal disease, two clusters of age (60 years as the cutoff), and before/after treatment, were investigated in this study. There were 38 participants recruited in this study, involving 18 subjects with moderate to severe periodontal-infected patients and 20 healthy controls. Total number of 126 bacterial species were identified by MALDI-TOF MS. The relative abundance of Streptococcus gordonii and Streptococcus intermedius in periodontal patients is higher than healthy controls indicating potential biomarkers for periodontal disease. Participants with periodontal disease were subdivided in to two clusters of age (60 years as the cutoff), 11 and 7 participants were age <60 years and>60 years, respectively. Meanwhile, the incidence of Streptococcus pneumoniae and Streptococcus oralis infection were higher in the subjects above 60 years old than below. Moreover, the bacterial distribution between pre-treatment and post-treatment was similar indicating that basic treatment without the ability to redistribute the microbiota. In summary, the cultivable oral anaerobic bacteria were identified by MALDI-TOF MS and the bacterial distribution shifting was shown to be associated with the progress of periodontal disease to aging and basic treatment. This study provided information for diagnosis and treatment guidelines for oral healthcare.
Assuntos
Microbiota , Doenças Periodontais , Anaerobiose , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Oxidative stress provides a major contribution to the pathogenesis of glaucoma and may induce retinal ganglion cell (RGC) damage. Transforming growth factor ß (TGF-ß) has appeared as a neuroprotective protein in various indignities. However, the TGF-ß mechanism of protective effects against oxidative stress damage in RGCs still undetermined. In our research, we investigated the regulatory mechanisms and potential effects of TGF-ß1 & TGF-ß2 in hydrogen peroxide (H2O2)-stimulated oxidative stress of RGCs in vitro. By a series of cell functional qualitative analysis, such as MTT cell viability assay, wound healing ability assay, apoptosis assay, intracellular ROS detection, immunoblot analysis, intracellular GSH content, and high-resolution respirometry, we illustrated the cell state in oxidative stress-induced injury. Results of protein expression showed that TGF-ß1 & TGF-ß2 was upregulated in RGCs after H2O2 stimulation. Cell functional assays resulted that knockdown of TGF-ß1 & TGF-ß2 reduced survival rate whereas enhanced apoptosis and accumulation of reactive oxygen species (ROS). Especially TGF-ß1 upregulation promoted the protein expression of aldehyde dehydrogenase 3A1 (ALDH3A1) and increased the activity of antioxidant and neuroprotection pathways. Additionally, TGF-ß1 & TGF-ß2 on antioxidant signaling was related to activation of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor (Nrf2), which are stress-response proteins. ROS accumulation followed by the accumulation of hypoxia-inducible factor (HIF-1α) caused mitochondrial damage and led to neurodegeneration. In summary, our results demonstrated that TGF-ß1 preserves RGCs from free radicals-mediated injury by upregulating the activation of Nrf2 expression and HO-1 signaling balance HIF-1α upregulation, implying a prospective role of TGF-ß1 in retinal neuroprotection-related therapies.
Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Acetilcisteína/farmacologia , Aldeído Desidrogenase/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologiaRESUMO
BACKGROUND: Non-virus genetic treatment for Parkinson's disease (PD) via plasmid glial cell-line derived neurotrophic factor (pGDNF) has shown potential for repairing damaged dopaminergic neurons. However, development of this gene therapy is largely hampered by the insufficient transfection efficiency as a result of the cell membrane, lysosome, and cytoskeleton meshwork. METHODS: In this study, we propose the use of polyethylenimine (PEI)-superparamagnetic iron oxide-plasmid DNA (pDNA)-loaded microbubbles (PSp-MBs) in conjunction with focused ultrasound (FUS) and two-step magnetic navigation to provide cavitation, proton sponge effect and magnetic effects to increase the efficiency of gene delivery. RESULTS: The gene transfection rate in the proposed system was 2.2-fold higher than that of the commercial agent (TransIT®-LT1). The transfection rate could be boosted â¼11%, â¼10%, and 6% by cavitation-magnetic hybrid enhanced cell membrane permeabilization, proton sponge effect, and magnetic-assisted cytoskeleton-reorganization, respectively. In vivo data suggested that effective gene delivery with this system results in a 3.2-fold increase in recovery of dopaminergic neurons and a 3.9-fold improvement in the motor behavior when compared to untreated genetic PD mice. CONCLUSIONS: We proposed that this novel FUS-magnetic hybrid gene delivery platform could be integrated with a variety of therapeutic genes for treating neurodegenerative diseases in the future.
Assuntos
Líquido Extracelular , Terapia Genética/métodos , Vetores Genéticos/genética , Líquido Intracelular , Campos Magnéticos , Doença de Parkinson/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Neurônios Dopaminérgicos/metabolismo , Líquido Extracelular/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Humanos , Líquido Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapiaRESUMO
Obesity is associated with metabolic disorders. Thus, obesity prevention and treatment are essential for health. Antrodia cinnamomea (AC) is a multifunctional medicinal fungus used for the treatment of various diseases and for preventing diet-induced obesity. Leptin deficiency causes over-eating and spontaneous obesity. The concomitant metabolic symptoms are more severe than diet-induced obesity. Here, we used leptin-deficient (ob/ob) mice as an animal model for over-feeding to study the effect of AC on obesity. We fed C57BL/6 mice (WT, ob+/+) and ob/ob mice with AC for four weeks before performing qRT-PCR and immunoblot analysis to elaborate AC-modulated mechanisms. Further, we used Caco-2 cells as a human intestinal epithelial barrier model to examine the effect of AC on intestinal permeability. Our results suggested that AC reduces lipid deposits of the liver and epididymal white adipose tissue (EWAT) by promoting lipid metabolism and inhibiting lipogenesis-associated genes and proteins in ob/ob mice. Moreover, AC effectively repaired intestinal-barrier injury caused by leptin deficiency and enhanced intestinal barrier integrity in Caco-2 cells. Interestingly, AC significantly reduced body weight and EWAT with no compromise on food intake in ob/ob mice. Thus, AC effectively reduced obesity caused by leptin-deficiency and can potentially be used as a nutraceutical for treating obesity.