Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871089

RESUMO

Aiming at the real-time observation requirements in marine science and ocean engineering, based on underwater acoustic communication and satellite communication technology, a seabed real-time sensing system for in-situ long-term multi-parameter observation applications (SRSS/ILMO) is proposed. It consists of a seabed observation system, a sea surface relay transmission buoy, and a remote monitoring system. The system communication link is implemented by underwater acoustic communication and satellite communication. The seabed observation system adopts the "ARM + FPGA" architecture to meet the low power consumption, scalability, and versatility design requirements. As a long-term unattended system, a two-stage anti-crash mechanism, an automatic system fault isolation design, dual-medium data storage, and improved Modbus protocol are adopted to meet the system reliability requirements. Through the remote monitoring system, users can configure the system working mode, sensor parameters and acquire observation data on demand. The seabed observation system can realize the observation of different fields by carrying different sensors such as those based on marine engineering geology, chemistry, biology, and environment. Carrying resistivity and pore pressure sensors, the SRSS/ILMO powered by seawater batteries was used for a seabed engineering geology observation. The preliminary test results based on harbor environment show the effectiveness of the developed system.

2.
ACS Sens ; 8(4): 1568-1578, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926846

RESUMO

Salinity is crucial for understanding the environmental and ecological processes in estuarine and coastal sediments. In situ measurements in sediments are scarce due to the low water content and particulate adsorption. Here, a new potentiometric sensor principle is proposed for the real-time in situ measurement of salinity in sediments. The sensor system is based on paper sampling and two all-solid electrodes, a cation-selective electrode (copper hexacyanoferrate, CuHCF) and an anion-selective electrode (Ag/AgCl). The spontaneous aqueous electrolyte extraction and redox reaction can produce a Nernstian response on both electrodes that is directly related to salinity. This potentiometric sensor allows for salinity acquisition in a wide salinity range (1-50 ppt), with high resolution (<1 ppt), and at a low water content (<30%), and it has been applied for the in situ measurement of salinity and the interpretation of cycling processes of metals in estuarine and coastal sediments. Moreover, the sensor coupled to a wireless monitoring system exhibited remote-sensing capability and successfully captured the salinity dynamic processes of the overlying water and pore water during the tidal period. This sensor with its low cost, versatility, and applicability represents a valuable tool to advance the comprehension of salinity and the salinity-driven dissolved-matter variations in estuarine and coastal sediments.


Assuntos
Sedimentos Geológicos , Salinidade , Monitoramento Ambiental , Metais , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA