Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(7): 1184-1192, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36355422

RESUMO

Congenital hearing impairment (HI) is a genetically highly heterogeneous disorder in which prompt recognition and intervention are crucial to optimize outcomes. In this study, we used exome sequencing to investigate a large consanguineous Pakistani family with eight affected individuals showing bilateral severe-to-profound HI. This identified a homozygous splice region variant in STX4 (c.232 + 6T>C), which causes exon skipping and a frameshift, that segregated with HI (two-point logarithm of odds (LOD) score = 5.9). STX4, a member of the syntaxin family, is a component of the SNARE machinery involved in several vesicle transport and recycling pathways. In silico analysis showed that murine orthologue Stx4a is highly and widespread expressed in the developing and adult inner ear. Immunofluorescent imaging revealed localization of STX4A in the cell body, cell membrane and stereocilia of inner and outer hair cells. Furthermore, a morpholino-based knockdown of stx4 in zebrafish showed an abnormal startle response, morphological and developmental defects, and a disrupted mechanotransduction function in neuromast hair cells measured via FM1-43 uptake. Our findings indicate that STX4 dysfunction leads to HI in humans and zebrafish and supports the evolutionary conserved role of STX4 in inner ear development and hair cell functioning.


Assuntos
Mecanotransdução Celular , Peixe-Zebra , Adulto , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Proteínas Qa-SNARE/genética , Audição/genética , Células Ciliadas Auditivas Externas
2.
J Gene Med ; 26(1): e3583, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37640479

RESUMO

BACKGROUND: Although defects in sperm morphology and physiology lead to male infertility, in many instances, the exact disruption of molecular pathways in a given patient is often unknown. The glycolytic pathway is an essential process to supply energy in sperm cell motility. Enolase 4 (ENO4) is crucial for the glycolytic process, which provides the energy for sperm cells in motility. ENO4 is located in the sperm principal piece and is essential for the motility and organization of the sperm flagellum. In the present study, we characterized a family with asthenozoospermia and abnormal sperm morphology as a result of a variant in the enolase 4 (ENO4) gene. METHODS: Computer-assisted semen analysis, papanicolaou smear staining and scanning electron microscopy were used to examine sperm motility and morphology for semen analysis in patients. For genetic analysis, whole-exome sequencing followed by Sanger sequencing was performed. RESULTS: Two brothers in a consanguineous family were being clinically investigated for sperm motility and morphology issues. Genetic analysis by whole-exome sequencing revealed a homozygous variant [c.293A>G, p.(Lys98Arg)] in the ENO4 gene that segregated with infertility in the family, shared by affected but not controls. CONCLUSIONS: In view of the association of asthenozoospermia and abnormal sperm morphology in Eno4 knockout mice, we consider this to be the first report describing the involvement of ENO4 gene in human male infertility. We also explore the possible involvement of another variant in explaining other phenotypic features in this family.


Assuntos
Astenozoospermia , Infertilidade Masculina , Camundongos , Animais , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/fisiologia , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Camundongos Knockout , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo
3.
Clin Genet ; 105(4): 455-456, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38346866

RESUMO

A 5-year-old affected male had following phenotypes: autism, motor stereotypy, developmental regression, staring gaze, absent speech, and behavioral abnormality. The biochemical testing was normal and genetic testing identified a de novo pathogenic variant in ITSN1 gene in the proband. To our knowledge, this is the second report that elucidates the role of ITSN1 gene in an autosomal dominant neurodevelopmental disorder.


Assuntos
Transtorno Autístico , Humanos , Masculino , Pré-Escolar , Família , Testes Genéticos , Fenótipo
4.
Am J Med Genet A ; 194(5): e63499, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38135440

RESUMO

MBTPS1 (NM_003791.4) encodes Site-1 protease, a serine protease that functions sequentially with Site-2 protease regulating cholesterol homeostasis and endoplasmic reticulum stress response. MBTPS1 pathogenic variants are associated with spondyloepiphyseal dysplasia, Kondo-Fu type (MIM:618392; cataract, alopecia, oral mucosal disorder, and psoriasis-like syndrome, and Silver-Russell-like syndrome). In this report, we describe a 14-year-old female with a complex medical history including white matter volume loss, early-onset cataracts, retrognathia, laryngomalacia, inguinal hernia, joint hypermobility, feeding dysfunction, and speech delay. Additionally, features of ectodermal dysplasia that she has include decreased sweating, heat intolerance, dysplastic nails, chronically dry skin, and abnormal hair growth issues. Exome sequencing analysis identified compound heterozygous variants in the MBTPS1 gene: c.2255G > T p.(Gly752Val) predicted to affect important function of the protein, which was inherited from the mother, and a splice site variant c.2831 + 5G > T, which was inherited from the father. The RNA-seq analysis of the splice variant showed skipping of exon 21, predicted to result in frameshifting p.(Ser901fs28*) leading to non-sense mediated decay. To our knowledge, only eight studies have been published that described the MBPTS1-related disorders. Interestingly, we observed the features of ectodermal dysplasia in our patient that further expands the phenotypic spectrum of MBTPS1 gene-related disorders.


Assuntos
Displasia Ectodérmica , Testes Genéticos , Adolescente , Feminino , Humanos , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Genótipo , Mutação , Fenótipo , Síndrome
5.
Clin Genet ; 104(4): 499-501, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37311648

RESUMO

A short report with two affected siblings from consanguineous family born with intellectual disability, motor disability, language deficit, and hearing impairment and found to carry biallelic nonsense variant in KPTN gene known to be associated with KPTN gene related syndrome.


Assuntos
Pessoas com Deficiência , Perda Auditiva , Deficiência Intelectual , Transtornos Motores , Humanos , Consanguinidade , Perda Auditiva/genética , Deficiência Intelectual/genética , Proteínas dos Microfilamentos/genética , Linhagem , Fenótipo , Síndrome
6.
J Hum Genet ; 66(12): 1169-1175, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34226616

RESUMO

Congenital hearing impairment (HI) is genetically heterogeneous making its genetic diagnosis challenging. Investigation of novel HI genes and variants will enhance our understanding of the molecular mechanisms and to aid genetic diagnosis. We performed exome sequencing and analysis using DNA samples from affected members of two large families from Ghana and Pakistan, segregating autosomal-dominant (AD) non-syndromic HI (NSHI). Using in silico approaches, we modeled and evaluated the effect of the likely pathogenic variants on protein structure and function. We identified two likely pathogenic variants in SLC12A2, c.2935G>A:p.(E979K) and c.2939A>T:p.(E980V), which segregate with NSHI in a Ghanaian and Pakistani family, respectively. SLC12A2 encodes an ion transporter crucial in the homeostasis of the inner ear endolymph and has recently been reported to be implicated in syndromic and non-syndromic HI. Both variants were mapped to alternatively spliced exon 21 of the SLC12A2 gene. Exon 21 encodes for 17 residues in the cytoplasmatic tail of SLC12A2, is highly conserved between species, and preferentially expressed in cochlear tissues. A review of previous studies and our current data showed that out of ten families with either AD non-syndromic or syndromic HI, eight (80%) had variants within the 17 amino acid residue region of exon 21 (48 bp), suggesting that this alternate domain is critical to the transporter activity in the inner ear. The genotypic spectrum of SLC12A2 was expanded and the involvement of SLC12A2 in ADNSHI was confirmed. These results also demonstrate the role that SLC12A2 plays in ADNSHI in diverse populations including sub-Saharan Africans.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Mutação , Membro 2 da Família 12 de Carreador de Soluto/genética , Alelos , Sequência de Aminoácidos , Feminino , Genótipo , Humanos , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Análise de Sequência de DNA , Membro 2 da Família 12 de Carreador de Soluto/química , Relação Estrutura-Atividade , Sequenciamento do Exoma
7.
J Hum Genet ; 66(10): 1009-1018, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33879837

RESUMO

BACKGROUND: Wolfram syndrome (WFS) is characterized by deafness, diabetes mellitus, and diabetes insipidus along with optic atrophy. WFS has an autosomal recessive mode of inheritance and is due to variants in WFS1 and CISD2. METHODS: We evaluated the underlying molecular etiology of three affected members of a consanguineous family with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities via exome sequencing approach. We correlated clinical and imaging data with the genetic findings and their associated phenotypes. RESULTS: We identified a homozygous missense variant p.(Asn1097Lys) in CDK13, a gene previously associated with autosomal dominant congenital heart defects, dysmorphic facial features, clinodactyly, gastrointestinal tract abnormalities, intellectual developmental disorder, and seizures with variable phenotypic features. CONCLUSION: We report a homozygous variant in CDK13 and suggest that this gene causes an autosomal recessive disorder with hearing impairment, bicuspid aortic valve, diabetes mellitus and insipidus, clinodactyly, and gastrointestinal tract abnormalities.


Assuntos
Proteína Quinase CDC2/genética , Surdez/genética , Predisposição Genética para Doença , Atrofia Óptica/genética , Síndrome de Wolfram/genética , Adolescente , Adulto , Doença da Válvula Aórtica Bicúspide/genética , Doença da Válvula Aórtica Bicúspide/patologia , Criança , Pré-Escolar , Consanguinidade , Surdez/complicações , Surdez/patologia , Diabetes Mellitus/genética , Feminino , Trato Gastrointestinal/anormalidades , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Perda Auditiva , Homozigoto , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto/genética , Atrofia Óptica/complicações , Atrofia Óptica/patologia , Síndrome de Wolfram/complicações , Síndrome de Wolfram/epidemiologia , Síndrome de Wolfram/patologia , Adulto Jovem
8.
J Hum Genet ; 65(2): 187-192, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31656313

RESUMO

Autosomal-recessive (AR) nonsyndromic hearing impairment (NSHI) displays a high degree of genetic heterogeneity with >100 genes identified. Recently, TMEM132E, which is highly expressed in inner hair cells, was suggested as a novel ARNSHI gene for DFNB99. A missense variant c.1259G>A: p.(Arg420Gln) in TMEM132E was identified that segregated with ARNSHI in a single Chinese family with two affected members. In the present study, a family of Pakistani origin with prelingual profound sensorineural hearing impairment displaying AR mode of inheritance was investigated via exome and Sanger sequencing. Compound heterozygous variants c.382G>T: p.(Ala128Ser) and c.2204C>T: p.(Pro735Leu) in TMEM132E were observed in affected but not in unaffected family members. TMEM132E variants identified in this and the previously reported ARNSHI family are located in the extracellular domain. In conclusion, we present a second ARNSHI family with TMEM132E variants which strengthens the evidence of the involvement of this gene in the etiology of ARNSHI.


Assuntos
Surdez/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Povo Asiático , Surdez/diagnóstico , Exoma/genética , Feminino , Genes Recessivos , Perda Auditiva Neurossensorial/diagnóstico , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem
9.
Hum Mutat ; 40(1): 53-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30303587

RESUMO

Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.


Assuntos
Segregação de Cromossomos/genética , Consanguinidade , Perda Auditiva/genética , Família , Feminino , Genes Recessivos , Predisposição Genética para Doença , Humanos , Masculino , Mutação/genética , Paquistão , Linhagem
10.
Hum Genet ; 138(6): 593-600, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30982135

RESUMO

Postaxial polydactyly (PAP) is a common limb malformation that often leads to cosmetic and functional complications. Molecular evaluation of polydactyly can serve as a tool to elucidate genetic and signaling pathways that regulate limb development, specifically, the anterior-posterior specification of the limb. To date, only five genes have been identified for nonsyndromic PAP: FAM92A, GLI1, GLI3, IQCE and ZNF141. In this study, two Pakistani multiplex consanguineous families with autosomal recessive nonsyndromic PAP were clinically and molecularly evaluated. From both pedigrees, a DNA sample from an affected member underwent exome sequencing. In each family, we identified a segregating frameshift (c.591dupA [p.(Q198Tfs*21)]) and nonsense variant (c.2173A > T [p.(K725*)]) in KIAA0825 (also known as C5orf36). Although KIAA0825 encodes a protein of unknown function, it has been demonstrated that its murine ortholog is expressed during limb development. Our data contribute to the establishment of a catalog of genes important in limb patterning, which can aid in diagnosis and obtaining a better understanding of the biology of polydactyly.


Assuntos
Dedos/anormalidades , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Polidactilia/genética , Dedos do Pé/anormalidades , Animais , Consanguinidade , Saúde da Família , Feminino , Dedos/patologia , Genótipo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Linhagem , Fenótipo , Polidactilia/patologia , Dedos do Pé/patologia , Sequenciamento do Exoma/métodos
11.
J Hum Genet ; 64(2): 153-160, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30498240

RESUMO

Sinoatrial node dysfunction and deafness (SANDD) syndrome is rare and characterized by a low heart beat and severe-to-profound deafness. Additional features include fatigue, dizziness, and episodic syncope. The sinoatrial node (SAN) drives heart automaticity and continuously regulates heart rate. The CACNA1D gene encoding the Cav1.3 protein expressed in inner hair cells, atria and SAN, induces loss-of-function in channel activity and underlies SANDD. To date, only one variant c.1208_1209insGGG:p.(G403_V404insG) has been reported for SANDD syndrome. We studied five Pakistani families with SANDD and characterized a new missense variant p.(A376V) in CACNA1D in one family, and further characterized the founder variant p.(G403_V404insG) in four additional pedigrees. We show that affected individuals in the four families which segregate p.(G403_V404insG) share a 1.03 MB haplotype on 3p21.1 suggesting they share a common distant ancestor. In conclusion, we identified new and known variants in CACNA1D in five Pakistani families with SANDD. This study is of clinical importance as the CACNA1D founder variant is only observed in families from the Khyber Pakhtunkhwa (KPK) province, in Pakistan. Therefore, screening patients with congenital deafness for SAN dysfunction in this province could ensure adequate follow-up and prevent cardiac failure associated with SAN.


Assuntos
Canais de Cálcio Tipo L/genética , Surdez/genética , Cardiopatias/genética , Mutação , Nó Sinoatrial/patologia , Adolescente , Surdez/complicações , Surdez/patologia , Feminino , Cardiopatias/complicações , Cardiopatias/patologia , Humanos , Masculino , Paquistão , Linhagem , Prognóstico , Nó Sinoatrial/metabolismo
12.
Hum Genet ; 137(6-7): 471-478, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29971487

RESUMO

Hereditary hearing impairment is a common sensory disorder that is genetically and phenotypically heterogeneous. In this study, we used a homozygosity mapping and exome sequencing strategy to study a consanguineous Pakistani family with autosomal recessive severe-to-profound hearing impairment. This led to the identification of a missense variant (p.Ile369Thr) in the LMX1A gene affecting a conserved residue in the C-terminus of the protein, which was predicted damaging by an in silico bioinformatics analysis. The p.Ile369Thr variant disrupts several C-terminal and homeodomain residue interactions, including an interaction with homeodomain residue p.Val241 that was previously found to be involved in autosomal dominant progressive HI. LIM-homeodomain factor Lmx1a is expressed in the inner ear through development, shows a progressive restriction to non-sensory epithelia, and is important in the separation of the sensory and non-sensory domains in the inner ear. Homozygous Lmx1a mutant mice (Dreher) are deaf with dysmorphic ears with an abnormal morphogenesis and fused and misshapen sensory organs; however, computed tomography performed on a hearing-impaired family member did not reveal any cochleovestibular malformations. Our results suggest that LMX1A is involved in both human autosomal recessive and dominant sensorineural hearing impairment.


Assuntos
Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Animais , Criança , Modelos Animais de Doenças , Orelha Interna/fisiopatologia , Feminino , Genes Dominantes , Genes Recessivos , Perda Auditiva/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Homozigoto , Humanos , Proteínas com Homeodomínio LIM/química , Masculino , Camundongos , Mutação de Sentido Incorreto , Linhagem , Fatores de Transcrição/química , Sequenciamento do Exoma
13.
BMC Med Genet ; 19(1): 122, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30029624

RESUMO

BACKGROUND: Digenic inheritance is the simplest model of oligenic disease. It can be observed when there is a strong epistatic interaction between two loci. For both syndromic and non-syndromic hearing impairment, several forms of digenic inheritance have been reported. METHODS: We performed exome sequencing in a Pakistani family with profound non-syndromic hereditary hearing impairment to identify the genetic cause of disease. RESULTS: We found that this family displays digenic inheritance for two trans heterozygous missense mutations, one in PCDH15 [p.(Arg1034His)] and another in USH1G [p.(Asp365Asn)]. Both of these genes are known to cause autosomal recessive non-syndromic hearing impairment and Usher syndrome. The protein products of PCDH15 and USH1G function together at the stereocilia tips in the hair cells and are necessary for proper mechanotransduction. Epistasis between Pcdh15 and Ush1G has been previously reported in digenic heterozygous mice. The digenic mice displayed a significant decrease in hearing compared to age-matched heterozygous animals. Until now no human examples have been reported. CONCLUSIONS: The discovery of novel digenic inheritance mechanisms in hereditary hearing impairment will aid in understanding the interaction between defective proteins and further define inner ear function and its interactome.


Assuntos
Caderinas/genética , Perda Auditiva/genética , Proteínas do Tecido Nervoso/genética , Adulto , Animais , Proteínas Relacionadas a Caderinas , Heterozigoto , Humanos , Masculino , Mecanotransdução Celular/genética , Herança Multifatorial/genética , Mutação/genética , Paquistão , Linhagem , Síndromes de Usher/genética , Adulto Jovem
14.
J Hum Genet ; 63(11): 1099-1107, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30177809

RESUMO

LHFPL5, the gene for DFNB67, underlies autosomal recessive nonsyndromic hearing impairment. We identified seven Pakistani families that mapped to 6p21.31, which includes the LHFPL5 gene. Sanger sequencing of LHFPL5 using DNA samples from hearing impaired and unaffected members of these seven families identified four variants. Among the identified variants, two were novel: one missense c.452 G > T (p.Gly151Val) and one splice site variant (c.*16 + 1 G > A) were each identified in two families. Two known variants: c.250delC (p.Leu84*) and c.380 A > G (p.Tyr127Cys) were also observed in two families and a single family, respectively. Nucleotides c.452G and c.*16 + 1G and amino-acid residue p.Gly151 are under strong evolutionary conservation. In silico bioinformatics analyses predicted these variants to be damaging. The splice site variant (c.*16 + 1 G > A) is predicted to affect pre-mRNA splicing and a loss of the 5' donor splice site in the 3'-untranslated region (3'-UTR). Further analysis supports the activation of a cryptic splice site approximately 357-bp downstream, leading to an extended 3'-UTR with additional regulatory motifs. In conclusion, we identified two novel variants in LHFPL5, including a unique 3'-UTR splice site variant that is predicted to impact pre-mRNA splicing and regulation through an extended 3'-UTR.


Assuntos
Regiões 3' não Traduzidas , Genes Recessivos , Doenças Genéticas Inatas/genética , Perda Auditiva/genética , Proteínas de Membrana/genética , Sítios de Splice de RNA , Feminino , Humanos , Masculino
17.
Congenit Anom (Kyoto) ; 64(3): 155-160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520260

RESUMO

Angelman syndrome (AS, MIM #105830) is a neurodevelopmental disorder characterized by severe intellectual disability, profound developmental delay, movement or balance problems, an excessively cheerful disposition, and seizures. AS results from inadequate expression of the maternal UBE3A gene (MIM #601623), which encodes an E3 ligase in the ubiquitin-proteasome pathway. Here we present the case of two sisters with features consistent with AS who had negative methylation analyses. An autism/intellectual disability expanded panel revealed a maternally inherited novel UBE3A (NM_001354506.2) variant c.2443C>T p.(Pro815Ser) in both patients that was initially classified as a variant of uncertain significance. The patients were enrolled in Indiana University's Undiagnosed Rare Disease Clinic (URDC) to further investigate the variant. Additional data, including deep phenotyping, familial segregation analysis, and in silico studies, suggest that the variant is likely pathogenic. 3D modeling studies based on the available crystal structure revealed that the Pro815Ser variant can introduce more flexibility into the protein and alter its enzymatic activity. Recent literature confirms the pathogenic nature of the variant. Reanalysis of the UBE3A variant has heightened existing knowledge of AS and has offered this family an end to their diagnostic odyssey.


Assuntos
Síndrome de Angelman , Irmãos , Ubiquitina-Proteína Ligases , Humanos , Síndrome de Angelman/genética , Síndrome de Angelman/diagnóstico , Feminino , Ubiquitina-Proteína Ligases/genética , Doenças Raras/genética , Doenças Raras/diagnóstico , Fenótipo , Linhagem , Mutação , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Predisposição Genética para Doença , Pré-Escolar
18.
Membranes (Basel) ; 13(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37367813

RESUMO

The present study is an attempt to improve thermal, mechanical and electrical properties of poly (methyl methacrylate) (PMMA). For this purpose, vinyltriethoxysilane (VTES) was grafted covalently on the surface of graphene oxide (GO). This VTES functionalized graphene oxide (VGO) was dispersed in the PMMA matrix using the solution casting method. The morphology of the resultant PMMA/VGO nanocomposites was analyzed by SEM indicating well-dispersed VGO in the PMMA matrix. Thermal stability, tensile strength and thermal conductivity increased by 90%, 91% and 75%, respectively, whereas volume electrical resistivity and surface electrical resistivity reduced to 9.45 × 105 Ω/cm and 5.45 × 107 Ω/cm2, respectively.

19.
Mol Syndromol ; 14(3): 201-207, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323198

RESUMO

Introduction: Syndactyly is a common congenital limb malformation. It occurs due to embryological failure of digit separation during limb development. Syndactyly often runs in families with an incidence of about one out of every 2,500-3,000 live births. Methods: Here, we have reported two families presenting features of severe forms of syndactyly. The disorder segregated in autosomal recessive in one and in autosomal dominant manner in the second family. Search for the causative variants was carried out using whole-exome sequencing in family A and candidate gene sequencing in family B. Results: Analysis of the sequencing data revealed two novel missense variants, including p.(Cys1925Arg) in MEGF8 in family A and p.(Thr89Ile) in GJA1 in family B. Conclusion: In conclusion, the novel findings, presented here, not only expand the mutation spectrum in the genes MEGF8 and GJA1, but this will also facilitate screening other families carrying similar clinical features in the Pakistani population.

20.
Eur J Hum Genet ; 31(11): 1270-1274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37684519

RESUMO

Polydactyly is the most common limb malformation that occurs in 1.6-10.6 per one thousand live births, with incidence varying with ancestry. The underlying gene has been identified for many of the ~100 syndromes that include polydactyly. While for the more common form, nonsydromic polydactyly, eleven candidate genes have been reported. We investigated the underlying genetic cause of autosomal recessive nonsyndromic postaxial polydactyly in four consanguineous Pakistani families. Some family members with postaxial polydactyly also present with syndactyly, camptodactyly, or clinodactyly. Analysis of the exome sequence data revealed two novel homozygous frameshift deletions in EFCAB7: [c.830delG;p.(Gly277Valfs*5)]; in three families and [c.1350_1351delGA;p.(Asn451Phefs*2)] in one family. Sanger sequencing confirmed that these variants segregated with postaxial polydactyly, i.e., family members with postaxial polydactyly were found to be homozygous while unaffected members were heterozygous or wild type. EFCAB7 displays expressions in the skeletal muscle and on the cellular level in cilia. IQCE-EFCAB7 and EVC-EVC2 are part of the heterotetramer EvC complex, which is a positive regulator of the Hedgehog (Hh) pathway, that plays a key role in limb formation. Depletion of either EFCAB7 or IQCE inhibits induction of Gli1, a direct Hh target gene. Variants in IQCE and GLI1 have been shown to cause nonsyndromic postaxial polydactyly, while variants in EVC and EVC2 underlie Ellis van Creveld and Weyers syndromes, which include postaxial polydactyly as a phenotype. This is the first report of the involvement of EFCAB7 in human disease etiology.


Assuntos
Deformidades Congênitas dos Membros , Polidactilia , Humanos , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco , Polidactilia/genética , Dedos/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA