Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 289(31): 21276-88, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24917668

RESUMO

In hepatitis C virus infection, replication of the viral genome and virion assembly are linked to cellular metabolic processes. In particular, lipid droplets, which store principally triacylglycerides (TAGs) and cholesterol esters (CEs), have been implicated in production of infectious virus. Here, we examine the effect on productive infection of triacsin C and YIC-C8-434, which inhibit synthesis of TAGs and CEs by targeting long-chain acyl-CoA synthetase and acyl-CoA:cholesterol acyltransferase, respectively. Our results present high resolution data on the acylglycerol and cholesterol ester species that were affected by the compounds. Moreover, triacsin C, which blocks both triglyceride and cholesterol ester synthesis, cleared most of the lipid droplets in cells. By contrast, YIC-C8-434, which only abrogates production of cholesterol esters, induced an increase in size of droplets. Although both compounds slightly reduced viral RNA synthesis, they significantly impaired assembly of infectious virions in infected cells. In the case of triacsin C, reduced stability of the viral core protein, which forms the virion nucleocapsid and is targeted to the surface of lipid droplets, correlated with lower virion assembly. In addition, the virus particles that were released from cells had reduced specific infectivity. YIC-C8-434 did not alter the association of core with lipid droplets but appeared to decrease production of infectious virus particles, suggesting a block in virion assembly. Thus, the compounds have antiviral properties, indicating that targeting synthesis of lipids stored in lipid droplets might be an option for therapeutic intervention in treating chronic hepatitis C virus infection.


Assuntos
Ésteres do Colesterol/biossíntese , Hepacivirus/fisiologia , Triglicerídeos/biossíntese , Montagem de Vírus , Linhagem Celular , Técnica Indireta de Fluorescência para Anticorpo , Hepacivirus/genética , Humanos , RNA Viral/biossíntese , Vírion
2.
Liver Int ; 35(10): 2256-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25800823

RESUMO

BACKGROUND: Chronic hepatitis C virus (HCV) infection of the liver with either genotype 1 or genotype 3 gives rise to distinct pathologies, and the two viral genotypes respond differently to antiviral therapy. METHODS: To understand these clinical differences, we compared gene transcription profiles in liver biopsies from patients infected with either gt1 or gt3, and uninfected controls. RESULTS: Gt1-infected biopsies displayed elevated levels of transcripts regulated by type I and type III interferons (IFN), including genes that predict response to IFN-α therapy. In contrast, genes controlled by IFN-γ were induced in gt3-infected biopsies. Moreover, IFN-γ levels were higher in gt3-infected biopsies. Analysis of hepatocyte-derived cell lines confirmed that the genes upregulated in gt3 infection were preferentially induced by IFN-γ. The transcriptional profile of gt3 infection was unaffected by IFNL4 polymorphisms, providing a rationale for the reduced predictive power of IFNL genotyping in gt3-infected patients. CONCLUSIONS: The interactions between HCV genotypes 1 and 3 and hepatocytes are distinct. These unique interactions provide avenues to explore the biological mechanisms that drive viral genotype-specific differences in disease progression and treatment response. A greater understanding of the distinct host-pathogen interactions of the different HCV genotypes is required to facilitate optimal management of HCV infection.


Assuntos
Hepatite C Crônica/genética , Hepatite C/genética , Interleucinas/genética , Fígado/patologia , Adulto , Linhagem Celular , Feminino , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Transcrição Gênica , Transcriptoma
4.
Mol Ther Nucleic Acids ; 32: 454-467, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37168797

RESUMO

A gene-silencing platform (miQURE) has been developed and successfully used to deliver therapeutic microRNA (miRNA) to the brain, reducing levels of neurodegenerative disease-causing proteins/RNAs via RNA interference and improving the disease phenotype in animal models. This study evaluates the use of miQURE technology to deliver therapeutic miRNA for liver-specific indications. Angiopoietin-like 3 (ANGPTL3) was selected as the target mRNA because it is produced in the liver and because loss-of-function ANGPTL3 mutations and/or pharmacological inhibition of ANGPTL3 protein lowers lipid levels and reduces cardiovascular risk. Overall, 14 candidate miRNA constructs were tested in vitro, the most potent of which (miAngE) was further evaluated in mice. rAAV5-miAngE led to dose-dependent (≤-77%) decreases in Angptl3 mRNA in WT mice with ≤-90% reductions in plasma ANGPTL3 protein. In dyslipidemic APOE∗3-Leiden.CETP mice, AAV5-miAngE significantly reduced cholesterol and triglyceride levels vs. vehicle and scrambled (miSCR) controls when administrated alone, with greater reductions when co-administered with lipid-lowering therapy (atorvastatin). A significant decrease in total atherosclerotic lesion area (-58% vs. miSCR) was observed in AAV5-miAngE-treated dyslipidemic mice, which corresponded with the maintenance of a non-diseased plaque phenotype and reduced lesion severity. These results support the development of this technology for liver-directed indications.

5.
Front Bioeng Biotechnol ; 9: 679483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414171

RESUMO

Of the adeno-associated viruses (AAVs), AAV9 is known for its capability to cross the blood-brain barrier (BBB) and can, therefore, be used as a noninvasive method to target the central nervous system. Furthermore, the addition of the peptide PhP.B to AAV9 increases its transduction across the BBB by 40-fold. Another neurotropic serotype, AAV5, has been shown as a gene therapeutic delivery vehicle to ameliorate several neurodegenerative diseases in preclinical models, but its administration requires invasive surgery. In this study, AAV9-PhP.B and AAV5-PhP.B were designed and produced in an insect cell-based system. To AAV9, the PhP.B peptide TLAVPFK was added, whereas in AAV5-PhP.B (AQTLAVPFKAQAQ), with AQ-AQAQ sequences used to swap with the corresponding sequence of AAV5. The addition of PhP.B to AAV5 did not affect its capacity to cross the mouse BBB, while increased transduction of liver tissue was observed. Then, intravenous (IV) and intrastriatal (IStr) delivery of AAV9-PhP.B and AAV5 were compared. For AAV9-PhP.B, similar transduction and expression levels were achieved in the striatum and cortex, irrespective of the delivery method used. IStr administration of AAV5 resulted in significantly higher amounts of vector DNA and therapeutic miRNA in the target regions such as striatum and cortex when compared with an IV administration of AAV9-PhP.B. These results illustrate the challenge in developing a vector that can be delivered noninvasively while achieving a transduction level similar to that of direct administration of AAV5. Thus, for therapeutic miRNA delivery with high local expression requirements, intraparenchymal delivery of AAV5 is preferred, whereas a humanized AAV9-PhP.B may be useful when widespread brain (and peripheral) transduction is needed.

6.
J Gen Virol ; 91(Pt 4): 1013-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19923258

RESUMO

Post-translational modifications (PTMs) of viral proteins regulate various stages of infection. With only 10 proteins, hepatitis C virus (HCV) can orchestrate its complete viral life cycle. HCV non-structural protein 3 (NS3) has many functions. It has protease and helicase activities, interacts with several host-cell proteins and plays a role in translation, replication and virus-particle formation. Organization of all these functions is necessary and could be regulated by PTMs. We therefore searched for modifications of the NS3 protein in the subgenomic HCV replicon. When performing a tag-capture approach coupled with two-dimensional gel electrophoresis analyses, we observed that isolated His6-NS3 yielded multiple spots. Individual protein spots were digested in gel and analysed by mass spectrometry. Differences observed between the individual peptide mass fingerprints suggested the presence of modified peptides and allowed us to identify N-terminal acetylation and an adaptive mutation of NS3 (Q1067R). Further analysis of other NS3 variants revealed phosphorylation of NS3.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional , Hepacivirus/fisiologia , Humanos , Dados de Sequência Molecular , Fosforilação
7.
Virol J ; 6: 62, 2009 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-19467155

RESUMO

BACKGROUND: Hepatitis C virus (HCV) induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B) has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD) of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. RESULTS: A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH). The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD) of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. CONCLUSION: Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.


Assuntos
Membrana Celular/virologia , Hepacivirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Proteínas de Escherichia coli/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
8.
Mol Ther Nucleic Acids ; 14: 593-608, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776581

RESUMO

The most common pathogenic mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic GGGGCC (G4C2) repeat in the chromosome 9 open reading frame 72 (C9orf72) gene. Cellular toxicity due to RNA foci and dipeptide repeat (DPR) proteins produced by the sense and antisense repeat-containing transcripts is thought to underlie the pathogenesis of both diseases. RNA sequencing (RNA-seq) data of C9orf72-ALS patients and controls were analyzed to better understand the sequence conservation of C9orf72 in patients. MicroRNAs were developed in conserved regions to silence C9orf72 (miC), and the feasibility of different silencing approaches was demonstrated in reporter overexpression systems. In addition, we demonstrated the feasibility of a bidirectional targeting approach by expressing two concatenated miC hairpins. The efficacy of miC was confirmed by the reduction of endogenously expressed C9orf72 mRNA, in both nucleus and cytoplasm, and an ∼50% reduction of nuclear RNA foci in (G4C2)44-expressing cells. Ultimately, two miC candidates were incorporated in adeno-associated virus vector serotype 5 (AAV5), and silencing of C9orf72 was demonstrated in HEK293T cells and induced pluripotent stem cell (iPSC)-derived neurons. These data support the feasibility of microRNA (miRNA)-based and AAV-delivered gene therapy that could alleviate the gain of toxicity seen in ALS and FTD patients.

9.
Mol Ther Nucleic Acids ; 16: 26-37, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30825670

RESUMO

A hexanucleotide GGGGCC expansion in intron 1 of chromosome 9 open reading frame 72 (C9orf72) gene is the most frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The corresponding repeat-containing sense and antisense transcripts cause a gain of toxicity through the accumulation of RNA foci in the nucleus and deposition of dipeptide-repeat (DPR) proteins in the cytoplasm of the affected cells. We have previously reported on the potential of engineered artificial anti-C9orf72-targeting miRNAs (miC) targeting C9orf72 to reduce the gain of toxicity caused by the repeat-containing transcripts. In the current study, we tested the silencing efficacy of adeno-associated virus (AAV)5-miC in human-derived induced pluripotent stem cell (iPSC) neurons and in an ALS mouse model. We demonstrated that AAV5-miC transduces different types of neuronal cells and can reduce the accumulation of repeat-containing C9orf72 transcripts. Additionally, we demonstrated silencing of C9orf72 in both the nucleus and cytoplasm, which has an added value for the treatment of ALS and/or FTD patients. A proof of concept in an ALS mouse model demonstrated the significant reduction in repeat-containing C9orf72 transcripts and RNA foci after treatment. Taken together, these findings support the feasibility of a gene therapy for ALS and FTD based on the reduction in toxicity caused by the repeat-containing C9orf72 transcripts.

10.
Mol Ther Methods Clin Dev ; 13: 512-525, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31194088

RESUMO

Gene therapy is being developed for the treatment of inherited diseases, whereby a therapeutic gene is continuously expressed in patients after delivery via viral vectors such as adeno-associated virus (AAV). Depending on the transgene, there could be a limited therapeutic window, and regulating timing and levels of transgene expression is advantageous. To control transgene transcription, the regulatory system GeneSwitch (GS) was evaluated in detail both in vitro and in vivo. The classical two-plasmid mifepristone (MFP)-inducible GS system was put into one plasmid or a single AAV5 vector. Our data demonstrate the inducibility of multiple transgenes and the importance of promoter and regulatory elements within the GS system. Mice injected with AAV5 containing the GS system transiently expressed mRNA and protein after MFP induction. The inducer MFP could be measured in plasma and liver tissue, and assessment of MFP and its metabolites showed rapid clearance from murine plasma. In a head-to-head comparison, our single vector outclassed the classical two-vector GS system. Finally, we show repeated inducibility of the transgene that also translated into a dynamic phenotypic change in mice. Taken together, this in-depth analysis of the GS system shows its applicability for regulated gene therapy.

11.
J Virol ; 80(9): 4336-43, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611892

RESUMO

The 3' nontranslated region (NTR) of the hepatitis C virus (HCV) genome is highly conserved and contains specific cis-acting RNA motifs that are essential in directing the viral replication machinery to initiate at the correct 3' end of the viral genome. Since the ends of viral genomes may be damaged by cellular RNases, preventing the initiation of viral RNA replication, stable RNA hairpin structures in the 3' NTR may also be essential in host defense against exoribonucleases. During 3'-terminal sequence analysis of serum samples of a patient with chronic hepatitis related to an HCV1b infection, a number of clones were obtained that were several nucleotides shorter at the extreme 3' end of the genome. These shorter 3' ends were engineered in selectable HCV replicons in order to enable the study of RNA replication in cell culture. When in vitro-transcribed subgenomic RNAs, containing shorter 3' ends, were introduced into Huh-7 cells, a few selectable colonies were obtained, and the 3' terminus of these subgenomic RNAs was sequenced. Interestingly, most genomes recovered from these colonies had regained the wild-type 3' ends, showing that HCV, like several other positive-stranded RNA viruses, has developed a strategy to repair deleted 3' end nucleotides. Furthermore, we found several genomes in these replicon colonies that contained a poly(A) tail and a short linker sequence preceding the poly(A) tail. After recloning and subsequent passage in Huh-7 cells, these poly(A) tails persisted and varied in length. In addition, the connecting linker became highly diverse in sequence and length, suggesting that these tails are actively replicated. The possible terminal repair mechanisms, including roles for the poly(A) tail addition, are discussed.


Assuntos
Regiões 3' não Traduzidas/genética , Variação Genética/genética , Hepacivirus/genética , Poli A/metabolismo , Poliadenilação/genética , Replicon/genética , Sequência de Bases , Linhagem Celular Tumoral , Genoma Viral/genética , Genótipo , Hepacivirus/química , Hepacivirus/isolamento & purificação , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Poli A/genética
12.
Blood Cells Mol Dis ; 35(3): 398-403, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16203162

RESUMO

Multivesicular bodies (MVB) are endosomal compartments that contain multiple vesicles, which derive from a delimiting membrane by inward budding. Incorporation of membrane proteins into the luminal vesicles requires, at least for some model proteins, monoubiquitination of their cytoplasmic domain. The ubiquitin tags are recognized by a sorting machinery, of which some components are also monoubiquitinated. The ubiquitin tags and the sorting machinery are both removed before the vesicles bud into the MVB lumen. MVB vesicles are therefore not expected to contain monoubiquitinated proteins. The MVB content is degraded upon fusion of MVB with lysosomes. In many cell types, however, MVB can also fuse with the plasma membrane, resulting in secretion of their luminal vesicles into the extracellular milieu. Such secreted vesicles are termed exosomes, and their protein composition should, due to their origin, be identical to that of MVB luminal vesicles. We here demonstrate that exosomes contain polyubiquitinated proteins, many of which are not integrated into the membrane and relatively enriched as compared to total cell lysates. These results suggest that a subset of polyubiquitinated cytoplasmic proteins is incorporated into the MVB pathway. The potential cell biological relevance of this observation is discussed. Furthermore, these data indicate that ubiquitinated proteins can serve as markers for exosomes.


Assuntos
Vesículas Citoplasmáticas/química , Exocitose , Proteínas de Membrana/metabolismo , Ubiquitinas/metabolismo , Animais , Linhagem Celular , Vesículas Citoplasmáticas/metabolismo , Células Dendríticas , Humanos , Camundongos , Ubiquitinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA