Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hered ; 115(1): 149-154, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37791665

RESUMO

The northern bat (Eptesicus nilssonii) is the most northern bat species in the world. Its distribution covers whole Eurasia, and the species is thus well adapted to different habitat types. However, recent population declines have been reported and rapid conservation efforts are needed. Here we present a high-quality de novo genome assembly of a female northern bat from Finland (BLF_Eptnil_asm_v1.0). The assembly was generated using a combination of Pacbio and Omni-C technologies. The primary assembly comprises 726 scaffolds spanning 2.0 Gb, represented by a scaffold N50 of 102 Mb, a contig N50 of 66.2 Mb, and a BUSCO completeness score of 93.73%. Annotation of the assembly identified 20,250 genes. This genome will be an important resource for the conservation and evolutionary genomic studies especially in understanding how rapid environmental changes affect northern species.


Assuntos
Quirópteros , Animais , Feminino , Quirópteros/genética , Genoma , Genômica , Evolução Biológica , Cromossomos
2.
Conserv Biol ; 36(2): e13803, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34224186

RESUMO

White-nose syndrome (WNS) is a fungal disease that has caused precipitous declines in several North American bat species, creating an urgent need for conservation. We examined how microclimates and other characteristics of hibernacula have affected bat populations following WNS-associated declines and evaluated whether cooling of warm, little-used hibernacula could benefit bats. During the period following mass mortality (2013-2020), we conducted 191 winter surveys of 25 unmanipulated hibernacula and 6 manipulated hibernacula across Pennsylvania (USA). We joined these data with additional datasets on historical (pre-WNS) bat counts and on the spatial distribution of underground sites. We used generalized linear mixed models and model selection to identify factors affecting bat populations. Winter counts of Myotis lucifugus were higher and increased over time in colder hibernacula (those with midwinter temperatures of 3-6 °C) compared with warmer (7-11 °C) hibernacula. Counts of Eptesicus fuscus, Myotis leibii, and Myotis septentrionalis were likewise higher in colder hibernacula (temperature effects = -0.73 [SE 0.15], -0.51 [0.18], and -0.97 [0.28], respectively). Populations of M. lucifugus and M. septentrionalis increased most over time in hibernacula surrounded by more nearby sites, whereas Eptesicus fuscus counts remained high where they had been high before WNS onset (pre-WNS high count effect = 0.59 [0.22]). Winter counts of M. leibii were higher in hibernacula with high vapor pressure deficits (VPDs) (particularly over 0.1 kPa) compared with sites with lower VPDs (VPD effect = 15.3 [4.6]). Counts of M. lucifugus and E. fuscus also appeared higher where VPD was higher. In contrast, Perimyotis subflavus counts increased over time in relatively warm hibernacula and were unaffected by VPD. Where we manipulated hibernacula, we achieved cooling of on average 2.1 °C. At manipulated hibernacula, counts of M. lucifugus and P. subflavus increased over time (years since manipulation effect = 0.70 [0.28] and 0.51 [0.15], respectively). Further, there were more E. fuscus where cooling was greatest (temperature difference effect = -0.46 [SE 0.11]), and there was some evidence there were more P. subflavus in hibernacula sections that remained warm after manipulation. These data show bats are responding effectively to WNS through habitat selection. In M. lucifugus, M. septentrionalis, and possibly P. subflavus, this response is ongoing, with bats increasingly aggregating at suitable hibernacula, whereas E. fuscus remain in previously favored sites. Our results suggest that cooling warm sites receiving little use by bats is a viable strategy for combating WNS.


El síndrome de nariz blanca (SNB) es una enfermedad fúngica que ha causado declinaciones precipitadas en varias especies de murciélagos norteamericanos, creando una necesidad urgente por conservarlas. Analizamos cómo los microclimas y otras características de los hibernáculos han afectado a las poblaciones de murciélagos después de declinaciones asociadas al SNB y evaluamos si el enfriamiento de hibernáculos cálidos con poco uso podría beneficiar a los murciélagos. Durante el periodo posterior a una mortalidad masiva (2013 - 2020), realizamos 191 censos invernales en 25 hibernáculos sin manipulación y en seis hibernáculos manipulados localizados en Pensilvania (EUA). Juntamos estos datos con conjuntos adicionales de datos de los conteos históricos (previos WNS) de murciélagos y de la distribución espacial de sitios subterráneos. Usamos modelos mixtos lineales generalizados y selección de modelos para identificar los factores que afectan a las poblaciones de murciélagos. Los conteos invernales de Myotis lucifugus fueron más altos e incrementaron con el tiempo en los hibernáculos fríos (aquellos con temperaturas de 3 - 6° C registradas a mitad del invierno) en comparación con los hibernáculos cálidos (7 - 11° C). Los conteos Eptesicus fuscus, M. leibii, y M. septentrionalis fueron igualmente más altos en los hibernáculos fríos (efectos de la temperatura = -0.73 [ES 0.15], -0.51 [0.18], y -0.97 [0.28], respectivamente). Las poblaciones de M. lucifugus y M. septentrionalis fueron las que más incrementaron con el tiempo en los hibernáculos rodeados por más sitios cercanos, mientras que los conteos de E. fuscus permanecieron altos en donde ya habían sido altos antes del comienzo del SNB (el efecto del conteo alto previo al SNB = 0.59 [0.22]). Los conteos invernales de M. leibii fueron más altos en los hibernáculos con altos déficits de presión de vapor (DPV) (particularmente por encima de los 0.1 kPa) en comparación con los sitios con un DPV menor (efecto del VPD = 15.3 [4.6]). Los conteos de M. lucifugus y E. fuscus también fueron más altos en donde el DPV era alto. Al contrario, los conteos de Perimyotis subflavus incrementaron con el tiempo en hibernáculos relativamente cálidos y no se vieron afectados por el DPV. En donde alcanzamos un promedio de enfriamiento de 2.1° C de los hibernáculos, los conteos de M. lucifugus y P. subflavus incrementaron con el tiempo (años desde el efecto de manipulación = 0.70 [0.28] y 0.51 [0.15], respectivamente). Además, encontramos más E. fuscus en donde el enfriamiento fue mayor (efecto de la diferencia en temperatura = −0.46 [ES 0.11]), y hubo algunas evidencias de que había mayor cantidad de P. subflavus en las secciones del hibernáculo que permanecieron cálidas después de la manipulación. Estos datos muestran que los murciélagos están respondiendo efectivamente al SNB mediante la selección de hábitat. En el caso de M. lucifugus, M. septentrionalis y posiblemente P. subflavus, esta respuesta es persistente, con los murciélagos agrupándose cada vez más en hibernáculos adecuados, mientras que E. fuscus permanece en sitios favorecidos previamente. Nuestros resultados sugieren que el enfriamiento de los sitios cálidos que reciben poco uso por parte de los murciélagos es una estrategia viable para combatir al SNB. Enfriamiento de los Hibernáculos de Murciélagos para Mitigar el Síndrome de Nariz Blanca.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Micoses , Animais , Quirópteros/microbiologia , Conservação dos Recursos Naturais , Micoses/prevenção & controle , Micoses/veterinária
3.
Proc Biol Sci ; 288(1952): 20210719, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34074117

RESUMO

Predicting the emergence and spread of infectious diseases is critical for the effective conservation of biodiversity. White-nose syndrome (WNS), an emerging infectious disease of bats, has resulted in high mortality in eastern North America. Because the fungal causative agent Pseudogymnoascus destructans is constrained by temperature and humidity, spread dynamics may vary by geography. Environmental conditions in the southern part of the continent are different than the northeast, where disease dynamics are typically studied, making it difficult to predict how the disease will manifest. Herein, we modelled WNS pathogen spread in Texas based on cave densities and average dispersal distances of hosts, projecting these results out to 10 years. We parameterized a predictive model of WNS epidemiology and its effects on bat populations with observed cave environmental data. Our model suggests that bat populations in northern Texas will be more affected by WNS mortality than southern Texas. As such, we recommend prioritizing the preservation of large overwintering colonies of bats in north Texas through management actions. Our model illustrates that infectious disease spread and infectious disease severity can become uncoupled over a gradient of environmental variation and highlight the importance of understanding host, pathogen and environmental conditions across a breadth of environments.


Assuntos
Ascomicetos , Quirópteros , Doenças Transmissíveis Emergentes , Hibernação , Animais , América do Norte/epidemiologia
4.
J Anim Ecol ; 89(6): 1365-1374, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32124439

RESUMO

To understand the diversity and strength of predation in natural communities, researchers must quantify the total amount of prey species in the diet of predators. Metabarcoding approaches have allowed widespread characterization of predator diets with high taxonomic resolution. To determine the wider impacts of predators, researchers should combine DNA techniques with estimates of population size of predators using mark-release-recapture (MRR) methods, and with accurate metrics of food consumption by individuals. Herein, we estimate the scale of predation exerted by four damselfly species on diverse prey taxa within a well-defined 12-ha study area, resolving the prey species of individual damselflies, to what extent the diets of predatory species overlap, and which fraction of the main prey populations are consumed. We identify the taxonomic composition of diets using DNA metabarcoding and quantify damselfly population sizes by MRR. We also use predator-specific estimates of consumption rates, and independent data on prey emergence rates to estimate the collective predation pressure summed over all prey taxa and specific to their main prey (non-biting midges or chironomids) of the four damselfly species. The four damselfly species collectively consumed a prey mass equivalent to roughly 870 (95% CL 410-1,800) g, over 2 months. Each individual consumed 29%-66% (95% CL 9.4-123) of its body weight during its relatively short life span (2.1-4.7 days; 95% CL 0.74-7.9) in the focal population. This predation pressure was widely distributed across the local invertebrate prey community, including 4 classes, 19 orders and c. 140 genera. Different predator species showed extensive overlap in diets, with an average of 30% of prey shared by at least two predator species. Of the available prey individuals in the widely consumed family Chironomidae, only a relatively small proportion (0.76%; 95% CL 0.35%-1.61%) were consumed. Our synthesis of population sizes, per-capita consumption rates and taxonomic distribution of diets identifies damselflies as a comparatively minor predator group of aerial insects. As the next step, we should add estimates of predation by larger odonate species, and experimental removal of odonates, thereby establishing the full impact of odonate predation on prey communities.


Assuntos
Chironomidae , Odonatos , Animais , Cadeia Alimentar , Insetos , Invertebrados , Comportamento Predatório
5.
Environ Sci Technol ; 54(17): 10385-10398, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830494

RESUMO

Although labeled as environmentally friendly, wind power can have negative impacts on the environment, such as habitat destruction or wildlife fatalities. Considering the distribution and migratory characteristics of European bats, the negative effects of wind power should be addressed on an appropriate scale. This review summarizes the current state of knowledge on interactions between wind farms and bats in Europe, and compares it with the situation in the countries of the European boreal biogeographic region. We analyzed data from papers published in international and national scientific journals, focusing on studies conducted in Europe. The issue of the impacts wind power has on bats is clearly overlooked in most of the countries of the European boreal region, with low volumes of research available on the topic. This is probably due to fewer wind farms in the area, making this recent issue a less-prioritized topic. However, the Baltic Sea, and the countries surrounding it, are of extreme importance with regards to bat migration, especially for the Pipistrellus nathusii. Therefore, more research on wind power and bats is needed in this region, as well as more cooperation between all the stakeholders.


Assuntos
Quirópteros , Animais , Biodiversidade , Fontes Geradoras de Energia , Europa (Continente) , Vento
6.
Oecologia ; 191(2): 295-309, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31506746

RESUMO

Resistance and tolerance allow organisms to cope with potentially life-threatening pathogens. Recently introduced pathogens initially induce resistance responses, but natural selection favors the development of tolerance, allowing for a commensal relationship to evolve. Mycosis by Pseudogymnoascus destructans, causing white-nose syndrome (WNS) in Nearctic hibernating bats, has resulted in population declines since 2006. The pathogen, which spread from Europe, has infected species of Palearctic Myotis for a longer period. We compared ecologically relevant responses to the fungal infection in the susceptible Nearctic M. lucifugus and less susceptible Palearctic M. myotis, to uncover factors contributing to survival differences in the two species. Samples were collected from euthermic bats during arousal from hibernation, a naturally occurring phenomenon, during which transcriptional responses are activated. We compared the whole-transcriptome responses in wild bats infected with P. destructans hibernating in their natural habitat. Our results show dramatically different local transcriptional responses to the pathogen between uninfected and infected samples from the two species. Whereas we found 1526 significantly upregulated or downregulated transcripts in infected M. lucifugus, only one transcript was downregulated in M. myotis. The upregulated response pathways in M. lucifugus include immune cell activation and migration, and inflammatory pathways, indicative of an unsuccessful attempt to resist the infection. In contrast, M. myotis appears to tolerate P. destructans infection by not activating a transcriptional response. These host-microbe interactions determine pathology, contributing to WNS susceptibility, or commensalism, promoting tolerance to fungal colonization during hibernation that favors survival.


Assuntos
Quirópteros , Hibernação , Micoses , Animais , Europa (Continente) , RNA
7.
Ecotoxicol Environ Saf ; 169: 93-102, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30439584

RESUMO

Metal elements, ubiquitous in the environment, can cause negative effects in long-lived organisms even after low but prolonged exposure. Insectivorous bats living near metal emission sources can be vulnerable to such contaminants. Although it is known that bats can bioaccumulate metals, little information exists on the effects of metal elements on their physiological status. For example, oxidative status markers are known to vary after detoxification processes and immune reactions. Here, for two consecutive summers, we sampled individuals from a natural population of the insectivorous bat, Myotis daubentonii, inhabiting a site close to a metal emission source. We quantified metals and metalloids (As, Ca, Cd, Co, Cu, Mn, Ni, Pb, Se, Zn) from individual fecal pellets. We measured enzymatic antioxidants (GP, CAT, SOD), total glutathione (tGSH) and ratio between reduced and oxidized glutathione (GSH:GSSG) from their red blood cells together with biometrics, hematocrit and parasite prevalence. In general, metal concentrations in feces of M. daubentonii reflected the exposure to ambient contamination. This was especially evident in the higher concentrations of Cd, Co, Cu and Ni close to a smelter compared to a site with less contaminant exposure. Annual differences were also observed for most elements quantified. Sex-specific differences were observed for calcium and zinc excretion. SOD and CAT enzymatic activities were associated with metal levels (principal components of six metal elements), suggesting early signs of chronic stress in bats. The study also shows promise for the use of non-invasive sampling to assess the metal exposure on an individual basis and metal contamination in the environment.


Assuntos
Antioxidantes/metabolismo , Quirópteros/metabolismo , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Metaloides/análise , Metais Pesados/análise , Estresse Oxidativo/efeitos dos fármacos , Animais , Quirópteros/crescimento & desenvolvimento , Fezes/química , Finlândia , Estações do Ano
8.
Mol Ecol ; 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30080945

RESUMO

Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA-Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome. Within 70-80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro-inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host-pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade-offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.

9.
PLoS Pathog ; 11(10): e1005168, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26426272

RESUMO

White-nose syndrome (WNS) in North American bats is caused by an invasive cutaneous infection by the psychrophilic fungus Pseudogymnoascus destructans (Pd). We compared transcriptome-wide changes in gene expression using RNA-Seq on wing skin tissue from hibernating little brown myotis (Myotis lucifugus) with WNS to bats without Pd exposure. We found that WNS caused significant changes in gene expression in hibernating bats including pathways involved in inflammation, wound healing, and metabolism. Local acute inflammatory responses were initiated by fungal invasion. Gene expression was increased for inflammatory cytokines, including interleukins (IL) IL-1ß, IL-6, IL-17C, IL-20, IL-23A, IL-24, and G-CSF and chemokines, such as Ccl2 and Ccl20. This pattern of gene expression changes demonstrates that WNS is accompanied by an innate anti-fungal host response similar to that caused by cutaneous Candida albicans infections. However, despite the apparent production of appropriate chemokines, immune cells such as neutrophils and T cells do not appear to be recruited. We observed upregulation of acute inflammatory genes, including prostaglandin G/H synthase 2 (cyclooxygenase-2), that generate eicosanoids and other nociception mediators. We also observed differences in Pd gene expression that suggest host-pathogen interactions that might determine WNS progression. We identified several classes of potential virulence factors that are expressed in Pd during WNS, including secreted proteases that may mediate tissue invasion. These results demonstrate that hibernation does not prevent a local inflammatory response to Pd infection but that recruitment of leukocytes to the site of infection does not occur. The putative virulence factors may provide novel targets for treatment or prevention of WNS. These observations support a dual role for inflammation during WNS; inflammatory responses provide protection but excessive inflammation may contribute to mortality, either by affecting torpor behavior or causing damage upon emergence in the spring.


Assuntos
Quirópteros/genética , Quirópteros/imunologia , Quirópteros/microbiologia , Micoses/veterinária , Animais , Ascomicetos/patogenicidade , Hibernação/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Micoses/genética , Micoses/imunologia , Síndrome , Transcriptoma , Fatores de Virulência/imunologia , Asas de Animais/imunologia
10.
Ecotoxicol Environ Saf ; 138: 242-252, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28068581

RESUMO

Vitamin and carotenoid deficiency may impair development in free-living vertebrates, because of the importance of these micronutrients to growth, antioxidant defense and calcium regulation. Micronutrient and calcium insufficiency can be intensified by metal pollution which can interfere with nutrient homeostasis or indirectly reduce food availability. Furthermore, absorption of dietary heavy metals is dependent on food calcium and vitamin levels. We investigated the effect of calcium on plasma vitamin and carotenoid profiles and how these affected growth and survival in two passerine birds with different calcium turnover living along a metal pollution gradient. Vitamins (A, D3 and E) and carotenoids were quantified from blood plasma of great tit (Parus major) and pied flycatcher (Ficedula hypoleuca) nestlings. Metal concentrations in soil and in feces from the same nestlings were used to assess the exposure to air pollution. Additionally, we examined the vitamin level variation between developmental stages (eggs and nestlings within the same brood). Our results showed that generally higher concentrations of vitamins and carotenoids circulate in blood of great tits than in pied flycatchers. In general, birds inhabiting the polluted zone presented lower concentrations of the studied micronutrients. Calcium supplementation and metal pollution decreased vitamin A concentration in pied flycatcher, but not in great tit, while vitamin A affected growth and survival in great tit and pied flycatcher respectively. Our results suggest that populations under exposure to metal pollution may experience increased vitamin A deficiency, and that the two passerine species, while obtaining similar micronutrients in food, respond differently to environmental disturbance of nutrients.


Assuntos
Cálcio/uso terapêutico , Carotenoides/sangue , Metais Pesados/análise , Passeriformes/sangue , Poluentes do Solo/análise , Vitaminas/sangue , Animais , Cálcio/deficiência , Colecalciferol/sangue , Suplementos Nutricionais , Fezes/química , Óvulo/metabolismo , Vitamina A/sangue , Vitamina E/sangue
11.
Mol Ecol ; 25(7): 1581-94, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26841188

RESUMO

Optimal foraging theory predicts that predators are selective when faced with abundant prey, but become less picky when prey gets sparse. Insectivorous bats in temperate regions are faced with the challenge of building up fat reserves vital for hibernation during a period of decreasing arthropod abundances. According to optimal foraging theory, prehibernating bats should adopt a less selective feeding behavior--yet empirical studies have revealed many apparently generalized species to be composed of specialist individuals. Targeting the diet of the bat Myotis daubentonii, we used a combination of molecular techniques to test for seasonal changes in prey selectivity and individual-level variation in prey preferences. DNA metabarcoding was used to characterize both the prey contents of bat droppings and the insect community available as prey. To test for dietary differences among M. daubentonii individuals, we used ten microsatellite loci to assign droppings to individual bats. The comparison between consumed and available prey revealed a preference for certain prey items regardless of availability. Nonbiting midges (Chironomidae) remained the most highly consumed prey at all times, despite a significant increase in the availability of black flies (Simuliidae) towards the end of the season. The bats sampled showed no evidence of individual specialization in dietary preferences. Overall, our approach offers little support for optimal foraging theory. Thus, it shows how novel combinations of genetic markers can be used to test general theory, targeting patterns at both the level of prey communities and individual predators.


Assuntos
Quirópteros/genética , Código de Barras de DNA Taxonômico , Comportamento Alimentar , Insetos/classificação , Comportamento Predatório , Animais , Chironomidae , Quirópteros/fisiologia , Dieta/veterinária , Fezes , Feminino , Genótipo , Insetos/genética , Masculino , Repetições de Microssatélites , Estações do Ano , Análise de Sequência de DNA , Simuliidae
12.
Emerg Infect Dis ; 20(6): 960-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24856523

RESUMO

A plethora of pathogenic viruses colonize bats. However, bat bacterial flora and its zoonotic threat remain ill defined. In a study initially conducted as a quantitative metagenomic analysis of the fecal bacterial flora of the Daubenton's bat in Finland, we unexpectedly detected DNA of several hemotrophic and ectoparasite-transmitted bacterial genera, including Bartonella. Bartonella spp. also were either detected or isolated from the peripheral blood of Daubenton's, northern, and whiskered bats and were detected in the ectoparasites of Daubenton's, northern, and Brandt's bats. The blood isolates belong to the Candidatus-status species B. mayotimonensis, a recently identified etiologic agent of endocarditis in humans, and a new Bartonella species (B. naantaliensis sp. nov.). Phylogenetic analysis of bat-colonizing Bartonella spp. throughout the world demonstrates a distinct B. mayotimonensis cluster in the Northern Hemisphere. The findings of this field study highlight bats as potent reservoirs of human bacterial pathogens.


Assuntos
Bacteriemia/veterinária , Infecções por Bartonella/veterinária , Bartonella/genética , Quirópteros/microbiologia , DNA Bacteriano/genética , Filogenia , Animais , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Bartonella/classificação , Bartonella/isolamento & purificação , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Reservatórios de Doenças , Fezes , Finlândia/epidemiologia , Humanos , Metagenoma , Família Multigênica
13.
Genome Biol Evol ; 15(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546695

RESUMO

Understanding mechanisms involved in speciation can be challenging, especially when hybridization or introgression blurs species boundaries. In bats, resolving relationships of some closely related groups has proved difficult due subtle interspecific variation both in morphometrics and molecular data sets. The endemic South American Histiotus bats, currently considered a subgenus of Eptesicus, harbor unresolved phylogenetic relationships and of those is a trio consisting of two closely related species: Eptesicus (Histiotus) macrotus and Eptesicus (Histiotus) montanus, and their relationship with a third, Eptesicus (Histiotus) magellanicus. The three sympatric species bear marked resemblance to each other, but can be differentiated morphologically. Furthermore, previous studies have been unable to differentiate the species from each other at a molecular level. In order to disentangle the phylogenetic relationships of these species, we examined the differentiation patterns and evolutionary history of the three Eptesicus (H.) species at the whole-genome level. The nuclear DNA statistics between the species suggest strong gene flow and recent hybridization between E. (H.) montanus and E. (H.) macrotus, whereas E. (H.) magellanicus shows a higher degree of isolation. In contrast, mitochondrial DNA shows a closer relationship between E. (H.) magellanicus and E. (H.) montanus. Opposing patterns in mtDNA and nuclear markers are often due to differences in dispersal, and here it could be both as a result of isolation in refugia during the last glacial maximum and female philopatry and male-biased dispersal. In conclusion, this study shows the importance of both the nuclear and mitochondrial DNA in resolving phylogenetic relationships and species histories.


Assuntos
Quirópteros , Genoma Mitocondrial , Animais , Feminino , Masculino , Filogenia , Quirópteros/genética , Simpatria , DNA Mitocondrial/genética , Análise de Sequência de DNA
14.
Environ Sci Technol ; 46(13): 7382-9, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22680406

RESUMO

Chironomids play an important role in the detritus cycle and as a component in brackish- and freshwater benthic and terrestrial food webs. If TBT is present in their environment, then they may accumulate tributyltin (TBT) during their juvenile period, which negatively affects many of their life history characteristics. The aim of this experiment is to test the effects of three TBT sediment concentrations (nominal 30, 90, and 180 µg/kg) on life history traits (development time, survival, fecundity, and weight) and immune response (number of hemocytes and phenoloxidase activity) of the nonbiting midge, Chironomus riparius. These responses were recorded immediately after one generation of TBT exposure, and in the long run during five consecutive generations. We also assessed recovery from pollution after four generations of TBT exposure. In a single generation, TBT affected all measured parameters, except phenoloxidase activity, when compared to the control. Long-term-effects of TBT lead to extinction of all treatments after the fifth generation. Again, all measured variables significantly differ from the control, although TBT had varying effects on the measured variables. Most of the effects of TBT on population viability were not evident during recovery, once TBT was removed from the sediment. The effect of previous TBT contamination was observed only in delayed larval development, suggesting that TBT has only limited maternal/epigenetic effects on individual condition. However, altered schedules in the life-cycle can have unexpected ecological impacts. TBT decreases the viability of Chironomus riparius and the effect will become stronger if exposure to TBT continues for many generations. Yet, the harmful effect of TBT disappears quickly as the TBT is removed from the environment.


Assuntos
Chironomidae/fisiologia , Compostos de Trialquitina/imunologia , Poluentes Químicos da Água/imunologia , Animais , Chironomidae/crescimento & desenvolvimento , Chironomidae/imunologia , Sedimentos Geológicos/análise , Estágios do Ciclo de Vida , Compostos de Trialquitina/análise , Poluentes Químicos da Água/análise
15.
Curr Opin Microbiol ; 62: 61-67, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098511

RESUMO

Hibernation, a period where bats have suppressed immunity and low body temperatures, provides the psychrophilic fungus Pseudogymnoascus destructans the opportunity to colonise bat skin, leading to severe disease in susceptible species. Innate immunity, which requires less energy and may remain more active during torpor, can control infections with local inflammation in some bat species that are resistant to infection. If infection is not controlled before emergence from hibernation, ineffective adaptive immune mechanisms are activated, including incomplete Th1, ineffective Th2, and variable Th17 responses. The Th17 and neutrophil responses, normally beneficial antifungal mechanisms, appear to be sources of immunopathology for susceptible bat species, because they are hyperactivated after return to homeothermy. Non-susceptible species show both well-balanced and suppressed immune responses both during and after hibernation.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Animais , Antifúngicos/farmacologia
16.
Sci Rep ; 10(1): 16595, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024156

RESUMO

We report a detection of a surprising similarity in the diet of predators across distant phyla. Though just a first glimpse into the subject, our discovery contradicts traditional aspects of biology, as the earliest notions in ecology have linked the most severe competition of resources with evolutionary relatedness. We argue that our finding deserves more research, and propose a plan to reveal more information on the current biodiversity loss around the world. While doing so, we expand the recently proposed conservation roadmaps into a parallel study of global interaction networks.


Assuntos
Ecologia , Eulipotyphla/fisiologia , Cadeia Alimentar , Insetos , Animais , Biodiversidade , Evolução Biológica , Conservação dos Recursos Naturais , Densidade Demográfica
17.
G3 (Bethesda) ; 10(6): 2117-2126, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327452

RESUMO

Despite its peculiar distribution, the biology of the southernmost bat species in the world, the Chilean myotis (Myotis chiloensis), has garnered little attention so far. The species has a north-south distribution of c. 2800 km, mostly on the eastern side of the Andes mountain range. Use of extended torpor occurs in the southernmost portion of the range, putting the species at risk of bat white-nose syndrome, a fungal disease responsible for massive population declines in North American bats. Here, we examined how geographic distance and topology would be reflected in the population structure of M. chiloensis along the majority of its range using a double digestion RAD-seq method. We sampled 66 individuals across the species range and discovered pronounced isolation-by-distance. Furthermore, and surprisingly, we found higher degrees of heterozygosity in the southernmost populations compared to the north. A coalescence analysis revealed that our populations may still not have reached secondary contact after the Last Glacial Maximum. As for the potential spread of pathogens, such as the fungus causing WNS, connectivity among populations was noticeably low, especially between the southern hibernatory populations in the Magallanes and Tierra del Fuego, and more northerly populations. This suggests the probability of geographic spread of the disease from the north through bat-to-bat contact to susceptible populations is low. The study presents a rare case of defined population structure in a bat species and warrants further research on the underlying factors contributing to this. See the graphical abstract here. https://doi.org/10.25387/g3.12173385.


Assuntos
Ascomicetos , Quirópteros , Micoses , Animais , Ascomicetos/genética , Quirópteros/genética , Genômica , Micoses/genética , Micoses/veterinária , Nariz
18.
G3 (Bethesda) ; 10(6): 2007-2020, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32276959

RESUMO

Novel pathogens can cause massive declines in populations, and even extirpation of hosts. But disease can also act as a selective pressure on survivors, driving the evolution of resistance or tolerance. Bat white-nose syndrome (WNS) is a rapidly spreading wildlife disease in North America. The fungus causing the disease invades skin tissues of hibernating bats, resulting in disruption of hibernation behavior, premature energy depletion, and subsequent death. We used whole-genome sequencing to investigate changes in allele frequencies within a population of Myotis lucifugus in eastern North America to search for genetic resistance to WNS. Our results show low FST values within the population across time, i.e., prior to WNS (Pre-WNS) compared to the population that has survived WNS (Post-WNS). However, when dividing the population with a geographical cut-off between the states of Pennsylvania and New York, a sharp increase in values on scaffold GL429776 is evident in the Post-WNS samples. Genes present in the diverged area are associated with thermoregulation and promotion of brown fat production. Thus, although WNS may not have subjected the entire M. lucifugus population to selective pressure, it may have selected for specific alleles in Pennsylvania through decreased gene flow within the population. However, the persistence of remnant sub-populations in the aftermath of WNS is likely due to multiple factors in bat life history.


Assuntos
Quirópteros , Hibernação , Micoses , Animais , Quirópteros/genética , Variação Genética , Micoses/genética , Micoses/veterinária , América do Norte
19.
Ecol Evol ; 10(9): 4164-4174, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489639

RESUMO

Bats utilize forests as roosting sites and feeding areas. However, it has not been documented how bats utilize these habitats in the boreal zone with methods afforded by recent technological advances. Forest structure and management practices can create a variety of three-dimensional habitats for organisms capable of flight, such as bats. Here, we study the presence of boreal bats in a forest forming a mosaic of different age classes, dominant tree species, canopy cover, soil fertility, and other environmental variables, throughout their active season in the summer using passive ultrasound detectors. Our results indicate a preference for mature forest by Eptesicus nilssonii and a pooled set of Myotis bats. Both groups of bats also showed temporal changes in their habitat use regarding forest age. In June and July, both groups occurred more often in mature than young forests, but from August onwards, the difference in occurrence became less evident in Myotis and disappeared completely in E. nilssonii. In addition, E. nilssonii was more often present in forests with low canopy cover, and its occurrence shifted from coniferous forests to deciduous forests during the season. The results reflect the within-season dynamics of bat communities and their ability to utilize different types of forest as environmental conditions change. Yet, the results most importantly emphasize the importance of mature forests to bat diversity and the need to conserve such environments in the boreal zone.

20.
Biol Rev Camb Philos Soc ; 95(6): 1855-1872, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32841483

RESUMO

Five decades ago, a landmark paper in Science titled The Cave Environment heralded caves as ideal natural experimental laboratories in which to develop and address general questions in geology, ecology, biogeography, and evolutionary biology. Although the 'caves as laboratory' paradigm has since been advocated by subterranean biologists, there are few examples of studies that successfully translated their results into general principles. The contemporary era of big data, modelling tools, and revolutionary advances in genetics and (meta)genomics provides an opportunity to revisit unresolved questions and challenges, as well as examine promising new avenues of research in subterranean biology. Accordingly, we have developed a roadmap to guide future research endeavours in subterranean biology by adapting a well-established methodology of 'horizon scanning' to identify the highest priority research questions across six subject areas. Based on the expert opinion of 30 scientists from around the globe with complementary expertise and of different academic ages, we assembled an initial list of 258 fundamental questions concentrating on macroecology and microbial ecology, adaptation, evolution, and conservation. Subsequently, through online surveys, 130 subterranean biologists with various backgrounds assisted us in reducing our list to 50 top-priority questions. These research questions are broad in scope and ready to be addressed in the next decade. We believe this exercise will stimulate research towards a deeper understanding of subterranean biology and foster hypothesis-driven studies likely to resonate broadly from the traditional boundaries of this field.


Assuntos
Cavernas , Ecologia , Adaptação Fisiológica , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA