Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gigascience ; 6(8): 1-13, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814063

RESUMO

Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field.


Assuntos
Biologia Computacional/métodos , Software , Algoritmos , Animais , Bases de Dados Factuais , Redes Reguladoras de Genes , Humanos , Redes e Vias Metabólicas , Mapas de Interação de Proteínas , Transdução de Sinais , Interface Usuário-Computador
2.
Science ; 342(6154): 1235587, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24092746

RESUMO

Interpreting variants, especially noncoding ones, in the increasing number of personal genomes is challenging. We used patterns of polymorphisms in functionally annotated regions in 1092 humans to identify deleterious variants; then we experimentally validated candidates. We analyzed both coding and noncoding regions, with the former corroborating the latter. We found regions particularly sensitive to mutations ("ultrasensitive") and variants that are disruptive because of mechanistic effects on transcription-factor binding (that is, "motif-breakers"). We also found variants in regions with higher network centrality tend to be deleterious. Insertions and deletions followed a similar pattern to single-nucleotide variants, with some notable exceptions (e.g., certain deletions and enhancers). On the basis of these patterns, we developed a computational tool (FunSeq), whose application to ~90 cancer genomes reveals nearly a hundred candidate noncoding drivers.


Assuntos
Variação Genética , Anotação de Sequência Molecular/métodos , Neoplasias/genética , Sítios de Ligação/genética , Genoma Humano , Genômica , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , População/genética , RNA não Traduzido/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA