RESUMO
Improving the hydroxide conductivity and dimensional stability of anion exchange membranes (AEMs) while retaining their high alkaline stability is necessary to realize the commercialization of AEM water electrolysis (AEMWE). A strategy for improving the hydroxide conductivity and dimensional stability of AEMs by inserting fluorine atoms in the core structure of the backbone is reported, which not only reduces the glass transition temperature of the polymer due to steric strain, but also induces distinct phase separation by inducing polarity discrimination to facilitate the formation of ion transport channels. The resulting PFPFTP-QA AEM with fluorine into the core structure shows high hydroxide conductivity (>159 mS cm-1 at 80 °C), favorable dimensional stability (>25% at 80 °C), and excellent alkaline stability for 1000 h in 2 m KOH solution at 80 °C. Moreover, the PFPFTP-QA is used to construct an AEMWE cell with a platinum group metal (PGM)-free NiFe anode, which exhibits the current density of 6.86 A cm-2 at 1.9 V at 80 °C, the highest performance in Pt/C cathode and PGM-free anode reports so far and operates stably for over 100 h at a constant current of 0.5 A cm-2.
RESUMO
Poly(2,6-dimethyl-1,4-phenylene oxide)s (PPOs)-based anion exchange membranes (AEMs) with four of the most widely investigated head groups were prepared. Through a combination of experimental and simulation approaches, the effects of the different types of head groups on the properties of the AEMs, including hydroxide conductivity, water content, physicochemical stability, and fuel cell device performance were fully explored. Unlike other studies, in which the conductivity was mostly investigated in liquid water, the conductivity of the PPO-based AEMs in 95% relative humidity (RH) conditions as well as in liquid water was investigated. The conductivity trend in 95% RH condition was different from that in liquid water but corresponded well with the actual cell performance trend observed, suggesting that the AEM fuel cell performance under in situ cell conditions (95% RH, 60 °C, H2/O2) is more closely related to the conductivity measured ex situ under 95% RH conditions (60 °C) than in liquid water. On the basis of the conductivity data and molecular simulation results, it was concluded that the predominant hydroxide ion-conducting mechanism in liquid water differs from that in the operating fuel cell environment, where the ionomers become hydrated only as a result of water vapor transported into the cells.