Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 36(20): 5587-95, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27194337

RESUMO

UNLABELLED: The p75 neurotrophin receptor (p75(NTR)) mediates neuronal death in response to neural insults by activating a caspase apoptotic pathway. The oligomeric state and activation mechanism that enable p75(NTR) to mediate these effects have recently been called into question. Here, we have investigated mutant mice lacking the p75(NTR) death domain (DD) or a highly conserved transmembrane (TM) cysteine residue (Cys(259)) implicated in receptor dimerization and activation. Neuronal death induced by proneurotrophins or epileptic seizures was assessed and compared with responses in p75(NTR) knock-out mice and wild-type animals. Proneurotrophins induced apoptosis of cultured hippocampal and cortical neurons from wild-type mice, but mutant neurons lacking p75(NTR), only the p75(NTR) DD, or just Cys(259) were all equally resistant to proneurotrophin-induced neuronal death. Homo-FRET anisotropy experiments demonstrated that both NGF and proNGF induce conformational changes in p75(NTR) that are dependent on the TM cysteine. In vivo, neuronal death induced by pilocarpine-mediated seizures was significantly reduced in the hippocampus and somatosensory, piriform, and entorhinal cortices of all three strains of p75(NTR) mutant mice. Interestingly, the levels of protection observed in mice lacking the DD or only Cys(259) were identical to those of p75(NTR) knock-out mice even though the Cys(259) mutant differed from the wild-type receptor in only one amino acid residue. We conclude that, both in vitro and in vivo, neuronal death induced by p75(NTR) requires the DD and TM Cys(259), supporting the physiological relevance of DD signaling by disulfide-linked dimers of p75(NTR) in the CNS. SIGNIFICANCE STATEMENT: A detailed understanding of the physiological significance of distinct structural determinants in the p75 neurotrophin receptor (p75(NTR)) is crucial for the identification of suitable drug targets in this receptor. We have tested the relevance of the p75(NTR) death domain (DD) and the highly conserved transmembrane residue Cys(259) for the ability of p75(NTR) to induce apoptosis in neurons of the CNS using gene-targeted mutant mice. The physiological importance of these determinants had been contested in some recent in vitro studies. Our results indicate a requirement for DD signaling by disulfide-linked dimers of p75(NTR) for neuronal death induced by proneurotrophins and epileptic seizures. These new mouse models will be useful for clarifying different aspects of p75(NTR) physiology.


Assuntos
Apoptose , Córtex Cerebral/metabolismo , Mutação , Multimerização Proteica , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Animais , Células COS , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Chlorocebus aethiops , Cisteína/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Pilocarpina/toxicidade , Domínios Proteicos , Receptores de Fator de Crescimento Neural/química , Receptores de Fator de Crescimento Neural/genética , Convulsões/etiologia , Convulsões/genética
2.
J Biol Chem ; 287(7): 4702-14, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22179776

RESUMO

Filopodia are dynamic actin-rich cell surface protrusions involved in cell migration, axon guidance, and wound healing. The RhoGTPase Cdc42 generates filopodia via IRSp53, a multidomain protein that links the processes of plasma membrane deformation and actin dynamics required for their formation in mammalian cells. The Src homology 3 domain of IRSp53 binds to the actin regulators Mena, Eps8, WAVE1, WAVE2, mDia1, and mDia2. We show that mDia1 and WAVE2 synergize with IRSp53 to form filopodia. IRSp53 also interacts directly with these two proteins within filopodia, as observed in acceptor photobleaching FRET studies. Measurement of filopodium formation by time-lapse imaging of live cells also revealed that depleting neuronal cells of either mDia1 or WAVE2 protein decreases the ability of IRSp53 to induce filopodia. In contrast, IRSp53 does not appear to partner WAVE1 or mDia2 to give rise to these structures. In addition, although all three isoforms of mDia are capable of inducing filopodia, IRSp53 requires only mDia1 to do so. These findings suggest that mDia1 and WAVE2 are important Src homology 3 domain partners of IRSp53 in forming filopodia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células CHO , Proteínas de Transporte/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Forminas , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudópodes/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Domínios de Homologia de src
3.
J Biol Chem ; 286(15): 13681-94, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21339294

RESUMO

Filopodia are cellular protrusions important for axon guidance, embryonic development, and wound healing. The Rho GTPase Cdc42 is the best studied inducer of filopodium formation, and several of its effectors and their interacting partners have been linked to the process. These include IRSp53, N-WASP, Mena, and Eps8. The Rho GTPase, Rif, also drives filopodium formation. The signaling pathway by which Rif induces filopodia is poorly understood, with mDia2 being the only protein implicated to date. It is thus not clear how distinct the Rif-driven pathway for filopodium formation is from the one mediated by Cdc42. In this study, we characterize the dynamics of Rif-induced filopodia by time lapse imaging of live neuronal cells and show that Rif drives filopodium formation via an independent pathway that does not involve the Cdc42 effectors N-WASP and IRSp53, the IRSp53 binding partner Mena, or the Rac effectors WAVE1 and WAVE2. Rif formed filopodia in the absence of N-WASP or Mena and when IRSp53, WAVE1, or WAVE2 was knocked down by RNAi. Rif-mediated filopodial protrusion was instead reduced by silencing mDia1 expression or overexpressing a dominant negative mutant of mDia1. mDia1 on its own was able to form filopodia. Data from acceptor photobleaching FRET studies of protein-protein interaction demonstrate that Rif interacts directly with mDia1 in filopodia but not with mDia2. Taken together, these results suggest a novel pathway for filopodia formation via Rif and mDia1.


Assuntos
Proteínas de Transporte/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pseudópodes/metabolismo , Transdução de Sinais/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Forminas , Técnicas de Silenciamento de Genes , Camundongos , Proteínas dos Microfilamentos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Pseudópodes/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-27378904

RESUMO

Lesions and mutations of the DISC1 (Disrupted-in-schizophrenia-1) gene have been linked to major depression, schizophrenia, bipolar disorder and autism, but the influence of DISC1 on synaptic transmission remains poorly understood. Using two independent genetic approaches-RNAi and a DISC1 KO mouse-we examined the impact of DISC1 on the synaptic vesicle (SV) cycle by population imaging of the synaptic tracer vGpH in hippocampal neurons. DISC1 loss-of-function resulted in a marked decrease in SV exocytic rates during neuronal stimulation and was associated with reduced Ca(2+) transients at nerve terminals. Impaired SV release was efficiently rescued by elevation of extracellular Ca(2+), hinting at a link between DISC1 and voltage-gated Ca(2+) channels. Accordingly, blockade of N-type Cav2.2 channels mimics and occludes the effect of DISC1 inactivation on SV exocytosis, and overexpression of DISC1 in a heterologous system increases Cav2.2 currents. Collectively, these results show that DISC1-dependent enhancement of SV exocytosis is mediated by Cav2.2 and point to aberrant glutamate release as a probable endophenotype of major psychiatric disorders.

5.
Elife ; 4: e11692, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26646181

RESUMO

Death domains (DDs) mediate assembly of oligomeric complexes for activation of downstream signaling pathways through incompletely understood mechanisms. Here we report structures of complexes formed by the DD of p75 neurotrophin receptor (p75(NTR)) with RhoGDI, for activation of the RhoA pathway, with caspase recruitment domain (CARD) of RIP2 kinase, for activation of the NF-kB pathway, and with itself, revealing how DD dimerization controls access of intracellular effectors to the receptor. RIP2 CARD and RhoGDI bind to p75(NTR) DD at partially overlapping epitopes with over 100-fold difference in affinity, revealing the mechanism by which RIP2 recruitment displaces RhoGDI upon ligand binding. The p75(NTR) DD forms non-covalent, low-affinity symmetric dimers in solution. The dimer interface overlaps with RIP2 CARD but not RhoGDI binding sites, supporting a model of receptor activation triggered by separation of DDs. These structures reveal how competitive protein-protein interactions orchestrate the hierarchical activation of downstream pathways in non-catalytic receptors.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/química , Receptores de Fator de Crescimento Neural/química , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico/química
6.
PLoS One ; 6(2): e16603, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21311754

RESUMO

Adenomatous Polyposis Coli (APC) is a tumor suppressor gene product involved in colon cancer. APC is a large multidomain molecule of 2843 amino acid residues and connects cell-cell adhesion, the F-actin/microtubule cytoskeleton and the nucleus. Here we show that Cdc42 interacts directly with the first three armadillo repeats of APC by yeast two-hybrid screens. We confirm the Cdc42-APC interaction using pulldown assays in vitro and FRET assays in vivo. Interestingly, Cdc42 interacts with APC at leading edge sites where F-actin is enriched. In contrast, Cdc42 interacts with the truncated mutant APC¹â»¹6³8 in cellular puncta associated with the golgi-lysozome pathway in transfected CHO cells. In HCT116 and SW480 cells, Cdc42 induces the relocalization of endogenous APC and the mutant APC¹â»¹³³8 to the plasma membrane and cellular puncta, respectively. Taken together, these data indicate that the Cdc42-APC interaction induces localization of both APC and mutant APC and may thus play a direct role in the functions of these proteins.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Humanos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transporte Proteico/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Distribuição Tecidual , Transfecção , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia
7.
PLoS One ; 5(8): e12153, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20730103

RESUMO

Transducer of Cdc42-dependent actin assembly (Toca-1) consists of an F-BAR domain, a Cdc42 binding site and an SH3 domain. Toca-1 interacts with N-WASP, an activator of actin nucleation that binds Cdc42. Cdc42 may play an important role in regulating Toca-1 and N-WASP functions. We report here that the cellular expression of Toca-1 and N-WASP induces membrane tubulation and the formation of motile vesicles. Marker and uptake analysis suggests that the tubules and vesicles are associated with clathrin-mediated endocytosis. Forster resonance energy transfer (FRET) and Fluorescence Lifetime Imaging Microscopy (FLIM) analysis shows that Cdc42, N-WASP and Toca-1 form a trimer complex on the membrane tubules and vesicles and that Cdc42 interaction with N-WASP is critical for complex formation. Modulation of Cdc42 interaction with Toca-1 and/or N-WASP affects membrane tubulation, vesicle formation and vesicle motility. Thus Cdc42 may influence endocytic membrane trafficking by regulating the formation and activity of the Toca-1/N-WASP complex.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Endocitose , Movimento , Vesículas Transportadoras/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Células CHO , Proteínas de Transporte/química , Membrana Celular/química , Cricetinae , Cricetulus , Proteínas de Ligação a Ácido Graxo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína
8.
J Biol Chem ; 284(17): 11622-36, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19213734

RESUMO

The transducer of Cdc42-dependent actin assembly (Toca-1)-N-WASP complex was isolated as an essential cofactor for Cdc42-driven actin polymerization in vitro. Toca-1 consists of an N-terminal F-BAR domain, followed by a Cdc42 binding site (HR1 domain) and an SH3 domain, (the N-WASP interacting site). N-WASP is an activator of actin nucleation through the Arp2/3 complex. The aim of the present study was to investigate the cellular function of the Toca-1-N-WASP complex. We report that Toca-1 induces filopodia and neurites as does N-WASP in N1E115 neuroblastoma cells. Toca-1 requires the F-BAR domain, Cdc42 binding site, and SH3 domain to induce filopodia. Toca-1 and N-WASP both require each other to induce filopodia. The expression of Toca-1 and N-WASP affects the distribution, size, and number of Rab5 positive membranes. Toca-1 interacts directly with N-WASP in filopodia and Rab5 membrane as seen by Forster resonance energy transfer. Thus the Toca-1-N-WASP complex localizes to and induces the formation of filopodia and endocytic vesicles. Last, three inhibitors of endocytosis, Dynamin-K44A, Eps15Delta95/295, and clathrin heavy chain RNA interference, block Toca-1-induced filopodial formation. Taken together, these data suggest that the Toca-1-N-WASP complex can link filopodial formation to endocytosis.


Assuntos
Proteínas de Transporte/fisiologia , Endocitose , Pseudópodes/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Humanos , Microscopia de Fluorescência/métodos , Mutagênese Sítio-Dirigida , Neuritos/metabolismo , Interferência de RNA , Proteína cdc42 de Ligação ao GTP/química , Proteínas rab5 de Ligação ao GTP/metabolismo , Domínios de Homologia de src
9.
J Biol Chem ; 284(20): 13602-13609, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19293156

RESUMO

The RhoGTPase Cdc42 coordinates cell morphogenesis, cell cycle, and cell polarity decisions downstream of membrane-bound receptors through distinct effector pathways. Cdc42-effector protein interactions represent important elements of cell signaling pathways that regulate cell biology in systems as diverse as yeast and humans. To derive mechanistic insights into cell signaling pathways, it is vital that we generate quantitative data from in vivo systems. We need to be able to measure parameters such as protein concentrations, rates of diffusion, and dissociation constants (K(D)) of protein-protein interactions in vivo. Here we show how single wavelength fluorescence cross-correlation spectroscopy in combination with Förster resonance energy transfer analysis can be used to determine K(D) of Cdc42-effector interactions in live mammalian cells. Constructs encoding green fluorescent protein or monomeric red fluorescent protein fusion proteins of Cdc42, an effector domain (CRIB), and two effectors, neural Wiskott-Aldrich syndrome protein (N-WASP) and insulin receptor substrate protein (IRSp53), were expressed as pairs in Chinese hamster ovary cells, and concentrations of free protein as well as complexed protein were determined. The measured K(D) for Cdc42V12-N-WASP, Cdc42V12-CRIB, and Cdc42V12-IRSp53 was 27, 250, and 391 nm, respectively. The determination of K(D) for Cdc42-effector interactions opens the way to describe cell signaling pathways quantitatively in vivo in mammalian cells.


Assuntos
Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Microscopia de Fluorescência/métodos , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína cdc42 de Ligação ao GTP/genética
10.
J Biol Chem ; 283(29): 20454-72, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18448434

RESUMO

The Cdc42 effector IRSp53 is a strong inducer of filopodia formation and consists of an Src homology domain 3 (SH3), a potential WW-binding motif, a partial-Cdc42/Rac interacting binding region motif, and an Inverse-Bin-Amphiphysins-Rvs (I-BAR) domain. We show that IRSp53 interacts directly with neuronal Wiskott-Aldrich syndrome protein (N-WASP) via its SH3 domain and furthermore that N-WASP is required for filopodia formation as IRSp53 failed to induce filopodia formation in N-WASP knock-out (KO) fibroblasts. IRSp53-induced filopodia formation can be reconstituted in N-WASP KO fibroblasts by full-length N-WASP, by N-WASPDeltaWA (a mutant unable to activate the Arp2/3 complex), and by N-WASPH208D (a mutant unable to bind Cdc42). IRSp53 failed to induce filopodia in mammalian enabled (Mena)/VASP KO cells, and N-WASP failed to induce filopodia when IRSp53 was knocked down with RNA interference. The IRSp53 I-BAR domain alone induces dynamic membrane protrusions that lack actin and are smaller than normal filopodia ("partial-filopodia") in both wild-type N-WASP and N-WASP KO cells. We propose that IRSp53 generates filopodia by coupling membrane protrusion through its I-BAR domain with actin dynamics through SH3 domain binding partners, including N-WASP and Mena.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pseudópodes/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cricetinae , Forminas , Humanos , Espectrometria de Massas , Proteínas do Tecido Nervoso/genética , Fenótipo , Ligação Proteica , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA