RESUMO
BACKGROUND: Plastic scintillating detectors (PSD) have gained popularity due to small size and are ideally suited in small-field dosimetry due to no correction needed and hence detector reading can be compared to dose. Likewise, these detectors are active and water equivalent. A new PSD from Blue Physics is characterized in photon beam. PURPOSE: Innovation in small-field dosimetry detector has led us to examine Blue Physics PSD (BP-PSD) for use in photon beams from linear accelerator. METHODS: BP-PSD was acquired and its characteristics were evaluated in photon beams from a Varian TrueBeam. Data were collected in a 3D water tank. Standard parameters; dose, dose rate, energy, angular dependence and temperature dependence were studied. Depth dose, profiles and output in a reference condition as well as small fields were measured. RESULTS: BP-PSD is versatile and provides data very similar to an ion chamber when Cerenkov radiation is properly accounted. This device measures data pulse by pulse which very few detectors can perform. The differences between ion chamber data and PSD are < 2% in most cases. The angular dependence is a bit pronounces to 1.5% which is due to PSD housing. Depth dose and profiles are comparable within < 1% to an ion chamber. For small fields this detector provides suitable field output factor compared to other detectors and Monte Carlo (MC) simulated data without any added correction factor. CONCLUSIONS: The characteristics of Blue Physics PSD is uniquely suitable in photon beam and more so in small fields. The data are reproducible compared to ion chamber for most parameters and ideally suitable for small-field dosimetry without any correction factor.
Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Humanos , Fótons , Método de Monte Carlo , ÁguaRESUMO
Purpose. Bolus is often required for targets close to or on skin surface, however, standard bolus on complex surfaces can result in air gaps that compromise dosimetry. Brass mesh boluses (RPD, Inc., Albertville, MN) are designed to conform to the patient's surface and reduce air gaps. While they have been well characterized for their use with photons, minimal characterization exists in literature for their use with electrons.Methods and materials.Dosimetric characteristics of brass mesh bolus was investigated for use with 6, 9 and 12 MeV electrons using a 10 × 10 cm2applicator on standard multi-energy LINAC. Measurements for bolus equivalence and percentage depth doses (PDDs) under brass mesh, as well as surface dose measurements were performed on solid water and a 3D printed resin breast phantom (Anycubic Photon MonoX, Shenzhen, China) using Markus®parallel-plate ionization chamber (Model 34045, PTW Freiburg, Germany), thermoluminescent detectors (TLD) and EBRT film. After obtaining surface dose measurements, these were compared to dose calculated on the Pinnacle3 treatment planning system (TPS, 16.2, Koninklijke Philips N.V.).Results. Measurements of surface dose under brass mesh showed consistently higher dose than without bolus, confirming that brass mesh can increase the PDD at surface up to â¼ 94% of dose at dmax, depending on incident electron energy. This increase is equivalent to using â¼ 7.2 mm water equivalent bolus for 6 MeV, â¼ 3.6 mm for 9 MeV and â¼ 2.2 mm bolus for 12 MeV electrons. TPS results showed close agreement within-vivomeasurements, confirming the potential for brass mesh as bolus for electron irradiation, provided blousing effect is correctly modelled.Conclusions. To increase electron surface dose, a brass mesh can be used with equivalent effect of water-density bolus varying with electron energy. Proper implementation could allow for ease of treatment, as well as increase bolus conformality in electron-only plans.
Assuntos
Cobre , Elétrons , Imagens de Fantasmas , Dosagem Radioterapêutica , Zinco , Elétrons/uso terapêutico , Humanos , Zinco/química , Cobre/química , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Feminino , Método de Monte Carlo , Neoplasias da Mama/radioterapiaRESUMO
Hepatocellular carcinoma (HCC) is the most common liver tumor, with a continually rising incidence. The curative treatment for HCC is surgical resection or liver transplantation; however, only a small portion of patients are eligible due to local tumor burden or underlying liver dysfunction. Most HCC patients receive nonsurgical liver-directed therapies (LDTs), including thermal ablation, transarterial chemoembolization (TACE), transarterial radioembolization (TARE), and external beam radiation therapy (EBRT). Stereotactic ablative body radiation (SABR) is a specific type of EBRT that can precisely deliver a high dose of radiation to ablate tumor cells using a small number of treatments (or fractions, typically 5 or less). With onboard MRI imaging, MRI-guided SABR can improve therapeutic dose while minimizing normal tissue exposure. In the current review, we discuss different LDTs and compare them with EBRT, specifically SABR. The emerging MRI-guided adaptive radiation therapy has been reviewed, highlighting its advantages and potential role in HCC management.
RESUMO
PURPOSE: Although vital to account for interfractional variations during radiation therapy, online adaptive replanning (OLAR) is time-consuming and labor-intensive compared with the repositioning method. Repositioning is enough for minimal interfractional deformations. Therefore, determining indications for OLAR is desirable. We introduce a method to rapidly determine the need for OLAR by analyzing the Jacobian determinant histogram (JDH) obtained from deformable image registration between reference (planning) and daily images. METHODS AND MATERIALS: The proposed method was developed and tested based on daily computed tomography (CT) scans acquired during image guided radiation therapy for prostate cancer using an in-room CT scanner. Deformable image registration between daily and reference CT scans was performed. JDHs were extracted from the prostate and a uniform surrounding 10-mm expansion. A classification tree was trained to determine JDH metrics to predict the need for OLAR for a daily CT set. Sixty daily CT scans from 12 randomly selected prostate cases were used as the training data set, with dosimetric plans for both OLAR and repositioning used to determine their class. The resulting classification tree was tested using an independent data set of 45 daily CT scans from 9 other patients with 5 CT scans each. RESULTS: Of a total of 27 JDH metrics tested, 5 were identified predicted whether OLAR was substantially superior to repositioning for a given fraction. A decision tree was constructed using the obtained metrics from the training set. This tree correctly identified all cases in the test set where benefits of OLAR were obvious. CONCLUSIONS: A decision tree based on JDH metrics to quickly determine the necessity of online replanning based on the image of the day without segmentation was determined using a machine learning process. The process can be automated and completed within a minute, allowing users to quickly decide which fractions require OLAR.
Assuntos
Órgãos em Risco , Radioterapia Guiada por Imagem/métodos , Feminino , Humanos , Internet , MasculinoRESUMO
With the advent of monochromatic and quasi-monochromatic x-ray sources, we explore their potential with computational and experimental studies on propagation through a combination of low and high-Z (atomic number) media for applications to imaging and detection. The multi-purpose code GEANT4 and a new code PHOTX are employed in numerical simulations, and a variety of x-ray sources are considered: conventional broadband devices with well-known spectra, quasi-monochromatic laser driven sources, and monochromatic synchrotron x-rays. Phantom samples consisting of layers of low-Z and high-Z material are utilized, with atomic-molecular species ranging from H2O to gold. Differential and total attenuation of x-ray fluxes from the different x-ray sources are illustrated through simulated x-ray images. Main conclusions of this study are: I. It is shown that a 65 keV Gaussian quasi-monochromatic source is capable of better contrast with less radiation exposure than a common 120 kV broadband simulator. II. A quantitative measure is defined and computed as a metric to compare the efficacy of any two x-ray sources, as a function of concentration of high-Z moieties in predominantly low-Z environment and depth of penetration. III. Characteristic spectral features of [Formula: see text], [Formula: see text] fluorescent emission and Compton scattering indicate pathways for accelerating x-ray photoexcitation and absorption; in particular, we model the tungsten [Formula: see text] at 59 keV alongside experimental measurements at the European synchrotron research facility to search for the signature of induced [Formula: see text] resonance fluorescence. The present study should contribute to the understanding of diagnostic potential of new x-ray sources under development, as well as the underlying fundamental physical processes and features for biomedical applications.
Assuntos
Diagnóstico por Imagem , Imagens de Fantasmas , Síncrotrons , Tecnologia Radiológica , Tomografia Computadorizada por Raios X/métodos , Humanos , Método de Monte Carlo , Raios XRESUMO
The purposes of this study were (i) to investigate the differences in effects between 160-kV low-energy and 6-MV high-energy X-rays, both by computational analysis and in vitro studies; (ii) to determine the effects of each on platinum-sensitized F98 rat glioma and murine B16 melanoma cells; and (iii) to describe the in vitro cytotoxicity and in vivo toxicity of a Pt(II) terpyridine platinum (Typ-Pt) complex. Simulations were performed using the Monte Carlo code Geant4 to determine enhancement in absorption of low- versus high-energy X-rays by Pt and to determine dose enhancement factors (DEFs) for a Pt-sensitized tumor phantom. In vitro studies were carried out using Typ-Pt and again with carboplatin due to the unexpected in vivo toxicity of Typ-Pt. Cell survival was determined using clonogenic assays. In agreement with computations and simulations, in vitro data showed up to one log unit reduction in surviving fractions (SFs) of cells treated with 1-4 µg/ml of Typ-Pt and irradiated with 160-kV versus 6-MV X-rays. DEFs showed radiosensitization in the 50-200 keV range, which fell to approximate unity at higher energies, suggesting marginal interactions at MeV energies. Cells sensitized with 1-5 or 7 µg/ml of carboplatin and then irradiated also showed a significant decrease (P < 0.05) in SFs. However, it was unlikely this was due to increased interactions. Theoretical and in vitro studies presented here demonstrated that the tumoricidal activity of low-energy X-rays was greater than that of high-energy X-rays against Pt-sensitized tumor cells. Determining whether radiosensitization is a function of increased interactions will require additional studies.