Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurol Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862654

RESUMO

BACKGROUND: Altered gut metabolites, especially short-chain fatty acids (SCFAs), in feces and plasma are observed in patients with Parkinson's disease (PD). OBJECTIVE: We aimed to investigate the colonic expression of two SCFA receptors, free fatty acid receptor (FFAR)2 and FFAR3, and gut barrier integrity in patients with PD and correlations with clinical severity. METHODS: In this retrospective study, colonic biopsy specimens were collected from 37 PD patients and 34 unaffected controls. Of this cohort, 31 participants (14 PD, 17 controls) underwent a series of colon biopsies. Colonic expression of FFAR2, FFAR3, and the tight junction marker ZO-1 were assayed by immunofluorescence staining. The You Only Look Once (version 8, YOLOv8) algorithm was used for automated detection and segmentation of immunostaining signal. PD motor function was assessed with the Movement Disorder Society (MDS)-Unified Parkinson's Disease Rating Scale (UPDRS), and constipation was assessed using Rome-IV criteria. RESULTS: Compared with controls, PD patients had significantly lower colonic expression of ZO-1 (p < 0.01) and FFAR2 (p = 0.01). On serial biopsy, colonic expression of FFAR2 and FFAR3 was reduced in the pre-motor stage before PD diagnosis (both p < 0.01). MDS-UPDRS motor scores did not correlate with colonic marker levels. Constipation severity negatively correlated with colonic ZO-1 levels (r = -0.49, p = 0.02). CONCLUSIONS: Colonic expression of ZO-1 and FFAR2 is lower in PD patients compared with unaffected controls, and FFAR2 and FFAR3 levels decline in the pre-motor stage of PD. Our findings implicate a leaky gut phenomenon in PD and reinforce that gut metabolites may contribute to the process of PD.

2.
BMC Med Imaging ; 22(1): 206, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434508

RESUMO

BACKGROUND: Glaucoma is one of the major causes of blindness; it is estimated that over 110 million people will be affected by glaucoma worldwide by 2040. Research on glaucoma detection using deep learning technology has been increasing, but the diagnosis of glaucoma in a large population with high incidence of myopia remains a challenge. This study aimed to provide a decision support system for the automatic detection of glaucoma using fundus images, which can be applied for general screening, especially in areas of high incidence of myopia. METHODS: A total of 1,155 fundus images were acquired from 667 individuals with a mean axial length of 25.60 ± 2.0 mm at the National Taiwan University Hospital, Hsinchu Br. These images were graded based on the findings of complete ophthalmology examinations, visual field test, and optical coherence tomography into three groups: normal (N, n = 596), pre-perimetric glaucoma (PPG, n = 66), and glaucoma (G, n = 493), and divided into a training-validation (N: 476, PPG: 55, G: 373) and test (N: 120, PPG: 11, G: 120) sets. A multimodal model with the Xception model as image feature extraction and machine learning algorithms [random forest (RF), support vector machine (SVM), dense neural network (DNN), and others] was applied. RESULTS: The Xception model classified the N, PPG, and G groups with 93.9% of the micro-average area under the receiver operating characteristic curve (AUROC) with tenfold cross-validation. Although normal and glaucoma sensitivity can reach 93.51% and 86.13% respectively, the PPG sensitivity was only 30.27%. The AUROC increased to 96.4% in the N + PPG and G groups. The multimodal model with the N + PPG and G groups showed that the AUROCs of RF, SVM, and DNN were 99.56%, 99.59%, and 99.10%, respectively; The N and PPG + G groups had less than 1% difference. The test set showed an overall 3%-5% less AUROC than the validation results. CONCLUSION: The multimodal model had good AUROC while detecting glaucoma in a population with high incidence of myopia. The model shows the potential for general automatic screening and telemedicine, especially in Asia. TRIAL REGISTRATION: The study was approved by the Institutional Review Board of the National Taiwan University Hospital, Hsinchu Branch (no. NTUHHCB 108-025-E).


Assuntos
Glaucoma , Miopia , Humanos , Prevalência , Grupos Focais , Glaucoma/diagnóstico por imagem , Glaucoma/epidemiologia , Miopia/diagnóstico por imagem , Miopia/epidemiologia , Inteligência Artificial
3.
J Digit Imaging ; 34(4): 948-958, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34244880

RESUMO

The purpose of this study was to detect the presence of retinitis pigmentosa (RP) based on color fundus photographs using a deep learning model. A total of 1670 color fundus photographs from the Taiwan inherited retinal degeneration project and National Taiwan University Hospital were acquired and preprocessed. The fundus photographs were labeled RP or normal and divided into training and validation datasets (n = 1284) and a test dataset (n = 386). Three transfer learning models based on pre-trained Inception V3, Inception Resnet V2, and Xception deep learning architectures, respectively, were developed to classify the presence of RP on fundus images. The model sensitivity, specificity, and area under the receiver operating characteristic (AUROC) curve were compared. The results from the best transfer learning model were compared with the reading results of two general ophthalmologists, one retinal specialist, and one specialist in retina and inherited retinal degenerations. A total of 935 RP and 324 normal images were used to train the models. The test dataset consisted of 193 RP and 193 normal images. Among the three transfer learning models evaluated, the Xception model had the best performance, achieving an AUROC of 96.74%. Gradient-weighted class activation mapping indicated that the contrast between the periphery and the macula on fundus photographs was an important feature in detecting RP. False-positive results were mostly obtained in cases of high myopia with highly tessellated retina, and false-negative results were mostly obtained in cases of unclear media, such as cataract, that led to a decrease in the contrast between the peripheral retina and the macula. Our model demonstrated the highest accuracy of 96.00%, which was comparable with the average results of 81.50%, of the other four ophthalmologists. Moreover, the accuracy was obtained at the same level of sensitivity (95.71%), as compared to an inherited retinal disease specialist. RP is an important disease, but its early and precise diagnosis is challenging. We developed and evaluated a transfer-learning-based model to detect RP from color fundus photographs. The results of this study validate the utility of deep learning in automating the identification of RP from fundus photographs.


Assuntos
Aprendizado Profundo , Degeneração Retiniana , Retinose Pigmentar , Inteligência Artificial , Fundo de Olho , Humanos , Retinose Pigmentar/diagnóstico por imagem , Retinose Pigmentar/genética
4.
ACS Chem Neurosci ; 13(23): 3263-3270, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36378559

RESUMO

Alzheimer's disease (AD) progresses relentlessly from the preclinical to the dementia stage. The process begins decades before the diagnosis of dementia. Therefore, it is crucial to detect early manifestations to prevent cognitive decline. Recent advances in artificial intelligence help tackle the complex high-dimensional data encountered in clinical decision-making. In total, we recruited 206 subjects, including 69 cognitively unimpaired, 40 subjective cognitive decline (SCD), 34 mild cognitive impairment (MCI), and 63 AD dementia (ADD). We included 3 demographic, 1 clinical, 18 brain-image, and 3 plasma biomarker (Aß1-42, Aß1-40, and tau protein) features. We employed the linear discriminant analysis method for feature extraction to make data more distinguishable after dimension reduction. The sequential forward selection method was used for feature selection to identify the 12 best features for machine learning classifiers. We used both random forest and support vector machine as classifiers. The area under the receiver operative curve (AUROC) was close to 0.9 between diseased (combining ADD and MCI) and the controls. AUROC was higher than 0.85 between SCD and controls, 0.90 between MCI and SCD, and above 0.85 between ADD and MCI. We can differentiate between adjacent phases of the AD spectrum with blood biomarkers and brain MR images with the help of machine learning algorithms.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Inteligência Artificial , Disfunção Cognitiva/diagnóstico , Aprendizado de Máquina
5.
NPJ Parkinsons Dis ; 8(1): 145, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309501

RESUMO

Hypomimia and voice changes are soft signs preceding classical motor disability in patients with Parkinson's disease (PD). We aim to investigate whether an analysis of acoustic and facial expressions with machine-learning algorithms assist early identification of patients with PD. We recruited 371 participants, including a training cohort (112 PD patients during "on" phase, 111 controls) and a validation cohort (74 PD patients during "off" phase, 74 controls). All participants underwent a smartphone-based, simultaneous recording of voice and facial expressions, while reading an article. Nine different machine learning classifiers were applied. We observed that integrated facial and voice features could discriminate early-stage PD patients from controls with an area under the receiver operating characteristic (AUROC) diagnostic value of 0.85. In the validation cohort, the optimal diagnostic value (0.90) maintained. We concluded that integrated biometric features of voice and facial expressions could assist the identification of early-stage PD patients from aged controls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA