Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Can J Microbiol ; 67(5): 406-414, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33226848

RESUMO

Fungal protoplast fusion is an approach to introduce novel characteristics into industrially important strains. Cellulases, essential enzymes with a wide range of biotechnological applications, are produced by many species of the filamentous fungi Trichoderma. In this study, a collection of 60 natural isolates were screened for Avicel and carboxymethyl cellulose degradation, and two cellulase producers of Trichoderma virens and Trichoderma harzianum were used for protoplast fusion. One of the resulting hybrids with improved cellulase activity, C1-3, was fused with the hyperproducer Trichoderma reesei Rut-C30. A new selected hybrid, F7, was increased in cellulase activity 1.8 and 5 times in comparison with Rut-C30 and C1-3, respectively. The increases in enzyme activity correlated with an upregulation of the cellulolytic genes cbh1, cbh2, egl3, and bgl1 in the parents. The amount of mRNA of cbh1 and cbh2 in F7 resembled that of Rut-C30 while the bgl1 mRNA level was similar to that of C1-3. AFLP (amplified fragment length polymorphism) fingerprinting and GC-MS (gas chromatography - mass spectrometry) analysis represented variations in parental strains and fusants. In conclusion, the results demonstrate that a 3-interspecific hybrid strain was isolated, with improved characteristics for cellulase degradation and showing genetic polymorphisms and differences in the volatile profile, suggesting reorganizations at the genetic level.


Assuntos
Celulase/biossíntese , Hypocreales/enzimologia , Protoplastos/metabolismo , Trichoderma/enzimologia , Trichoderma/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Celulose/metabolismo , Regulação Fúngica da Expressão Gênica , Hypocrea/enzimologia , Hypocrea/genética , Hypocreales/genética , Microbiologia Industrial , Polimorfismo Genético , RNA Fúngico/genética , RNA Mensageiro/genética
2.
BMC Genomics ; 20(1): 67, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665350

RESUMO

BACKGROUND: The orange pigmentation of the agar cultures of many Fusarium species is due to the production of carotenoids, terpenoid pigments whose synthesis is stimulated by light. The genes of the carotenoid pathway and their regulation have been investigated in detail in Fusarium fujikuroi. In this and other Fusarium species, such as F. oxysporum, deep-pigmented mutants affected in the gene carS, which encodes a protein of the RING-finger family, overproduce carotenoids irrespective of light. The induction of carotenogenesis by light and its deregulation in carS mutants are achieved on the transcription of the structural genes of the pathway. We have carried out global RNA-seq transcriptomics analyses to investigate the relationship between the regulatory role of CarS and the control by light in these fungi. RESULTS: The absence of a functional carS gene or the illumination exert wide effects on the transcriptome of F. fujikuroi, with predominance of genes activated over repressed and a greater functional diversity in the case of genes induced by light. The number of the latter decreases drastically in a carS mutant (1.1% vs. 4.8% in the wild-type), indicating that the deregulation produced by the carS mutation affects the light response of many genes. Moreover, approximately 27% of the genes activated at least 2-fold by light or by the carS mutation are coincident, raising to 40% for an 8-fold activation threshold. As expected, the genes with the highest changes under both regulatory conditions include those involved in carotenoid metabolism. In addition, light and CarS strongly influence the expression of some genes associated with stress responses, including three genes with catalase domains, consistent with roles in the control of oxidative stress. The effects of the CarS mutation or light in the transcriptome of F. oxysporum were partially coincident with those of F. fujikuroi, indicating the conservation of the objectives of their regulatory mechanisms. CONCLUSIONS: The CarS RING finger protein down-regulates many genes whose expression is up-regulated by light in wild strains of the two investigated Fusarium species, indicating a regulatory interplay between the mechanism of action of the CarS protein and the control by light.


Assuntos
Proteínas Fúngicas/fisiologia , Fusarium/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Proteínas Fúngicas/genética , Fusarium/metabolismo , Fusarium/efeitos da radiação , Perfilação da Expressão Gênica , Mutação , Ativação Transcricional , Transcriptoma/efeitos da radiação
3.
Microb Cell Fact ; 17(1): 47, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566690

RESUMO

BACKGROUND: Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-D-glucosamine (GlcNAc) units. Gene chit42 was previously characterized, and according to its sequence, the encoded protein included in the structural Glycoside Hydrolase family GH18. RESULTS: Chit42 was expressed in Pichia pastoris using fed-batch fermentation to about 3 g/L. Protein heterologously expressed showed similar biochemical properties to those expressed by the natural producer (42 kDa, optima pH 5.5-6.5 and 30-40 °C). In addition to hydrolyse colloidal chitin, this enzyme released reducing sugars from commercial chitosan of different sizes and acetylation degrees. Chit42 hydrolysed colloidal chitin at least 10-times more efficiently (defined by the kcat/Km ratio) than any of the assayed chitosan. Production of partially acetylated chitooligosaccharides was confirmed in reaction mixtures using HPAEC-PAD chromatography and mass spectrometry. Masses corresponding to (D-glucosamine)1-8-GlcNAc were identified from the hydrolysis of different substrates. Crystals from Chit42 were grown and the 3D structure determined at 1.8 Å resolution, showing the expected folding described for other GH18 chitinases, and a characteristic groove shaped substrate-binding site, able to accommodate at least six sugar units. Detailed structural analysis allows depicting the features of the Chit42 specificity, and explains the chemical nature of the partially acetylated molecules obtained from analysed substrates. CONCLUSIONS: Chitinase Chit42 was expressed in a heterologous system to levels never before achieved. The enzyme produced small partially acetylated chitooligosaccharides, which have enormous biotechnological potential in medicine and food. Chit42 3D structure was characterized and analysed. Production and understanding of how the enzymes generating bioactive chito-oligomers work is essential for their biotechnological application, and paves the way for future work to take advantage of chitinolytic activities.


Assuntos
Quitina/análogos & derivados , Quitina/química , Quitinases/química , Quitosana/química , Proteínas/química , Oligossacarídeos
4.
Int J Mol Sci ; 19(1)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29324661

RESUMO

Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Interações Hospedeiro-Patógeno , Bombas de Próton/metabolismo , Rodopsina/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Ácidos Indolacéticos/farmacologia , Neurospora/genética , Neurospora/metabolismo , Oryza/microbiologia , Bombas de Próton/química , Bombas de Próton/genética , Rodopsina/química , Rodopsina/genética , Homologia de Sequência , Acetato de Sódio/farmacologia
5.
Fungal Genet Biol ; 86: 20-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26688466

RESUMO

Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and ß-carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lackof CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.


Assuntos
Aldeído Desidrogenase/isolamento & purificação , Proteínas Fúngicas/isolamento & purificação , Fusarium/enzimologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Sequência de Aminoácidos , Carotenoides/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Retinal Desidrogenase/química , Tretinoína/metabolismo
6.
Eukaryot Cell ; 12(9): 1305-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23893079

RESUMO

The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving ß-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cß double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.


Assuntos
Neurospora crassa/enzimologia , Oxigenases/metabolismo , Estilbenos/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutação , Neurospora crassa/efeitos dos fármacos , Oxigenases/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resveratrol , Sesquiterpenos/farmacologia , Sorbose/farmacologia , Estilbenos/farmacologia , Fitoalexinas
7.
Noncoding RNA ; 10(3)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38804363

RESUMO

Small RNAS (sRNAs) participate in regulatory RNA interference (RNAi) mechanisms in a wide range of eukaryotic organisms, including fungi. The fungus Fusarium fujikuroi, a model for the study of secondary metabolism, contains a complete set of genes for RNAi pathways. We have analyzed by high-throughput sequencing the content of sRNAs in total RNA samples of F. fujikuroi grown in synthetic medium in the dark or after 1 h of illumination, using libraries below 150 nt, covering sRNAs and their precursors. For comparison, a parallel analysis with Fusarium oxysporum was carried out. The sRNA reads showed a higher proportion of 5' uracil in the RNA samples of the expected sizes in both species, indicating the occurrence of genuine sRNAs, and putative miRNA-like sRNAs (milRNAS) were identified with prediction software. F. fujikuroi carries at least one transcriptionally expressed Ty1/copia-like retrotransposable element, in which sRNAs were found in both sense and antisense DNA strands, while in F. oxysporum skippy-like elements also show sRNA formation. The finding of sRNA in these mobile elements indicates an active sRNA-based RNAi pathway. Targeted deletion of dcl2, the only F. fujikuroi Dicer gene with significant expression under the conditions tested, did not produce appreciable phenotypic or transcriptomic alterations.

8.
J Fungi (Basel) ; 10(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535211

RESUMO

The phytopathogenic fungus Fusarium fujikuroi has a rich secondary metabolism which includes the synthesis of very different metabolites in response to diverse environmental cues, such as light or nitrogen. Here, we focused our attention on fusarins, a class of mycotoxins whose synthesis is downregulated by nitrogen starvation. Previous data showed that mutants of genes involved in carotenoid regulation (carS, encoding a RING finger protein repressor), light detection (wcoA, White Collar photoreceptor), and cAMP signaling (AcyA, adenylate cyclase) affect the synthesis of different metabolites. We studied the effect of these mutations on fusarin production and the expression of the fus1 gene, which encodes the key polyketide synthase of the pathway. We found that the three proteins are positive regulators of fusarin synthesis, especially WcoA and AcyA, linking light regulation to cAMP signaling. Genes for two other photoreceptors, the cryptochrome CryD and the Vivid flavoprotein VvdA, were not involved in fusarin regulation. In most cases, there was a correspondence between fusarin production and fus1 mRNA, indicating that regulation is mainly exerted at the transcriptional level. We conclude that fusarin synthesis is subject to a complex control involving regulators from different signaling pathways.

9.
Mol Genet Genomics ; 288(3-4): 157-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23543145

RESUMO

The ascomycete fungus Fusarium fujikuroi is a model system in the investigation of the biosynthesis of some secondary metabolites, such as gibberellins, bikaverin, and carotenoids. Carotenoid-overproducing mutants, generically called carS, are easily obtained in this fungus by standard mutagenesis procedures. Here we report the functional characterization of gene carS, responsible for this mutant phenotype. The identity of the gene was demonstrated through the finding of mutations in six independent carS mutants and by the complementation of one of them. The F. fujikuroi carS gene was able to restore the control of carotenogenesis in a similar deregulated mutant of Fusarium oxysporum, but only partially at the transcription level, indicating an unexpected complexity in the regulation of the pathway. Due to the pleiotropic characteristics of this mutation, which also modifies the production of other secondary metabolites, we did a screening for carS-regulated genes by subtracted cDNA hybridization. The results show that the carS mutation affects the regulation of numerous genes in addition to those of carotenogenesis. The expression of the identified genes was usually enhanced by light, a regulatory effect also exhibited by the carS gene. However, in most cases, their mRNA levels in carS mutants were similar to those of the wild type, suggesting a regulation that affects mRNA availability rather than mRNA synthesis.


Assuntos
Carotenoides/biossíntese , Proteínas Fúngicas/genética , Fusarium/genética , Regulação Fúngica da Expressão Gênica/genética , Sequência de Aminoácidos , Vias Biossintéticas/genética , Carotenoides/química , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Teste de Complementação Genética , Luz , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Retinaldeído/biossíntese , Retinaldeído/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
10.
J Fungi (Basel) ; 9(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36983487

RESUMO

Light is an important modulating signal in fungi. Fusarium species stand out as research models for their phytopathogenic activity and their complex secondary metabolism. This includes the synthesis of carotenoids, whose induction by light is their best known photoregulated process. In these fungi, light also affects other metabolic pathways and developmental stages, such as the formation of conidia. Photoreceptor proteins are essential elements in signal transduction from light. Fusarium genomes contain genes for at least ten photoreceptors: four flavoproteins, one photolyase, two cryptochromes, two rhodopsins, and one phytochrome. Mutations in five of these genes provide information about their functions in light regulation, in which the flavoprotein WcoA, belonging to the White Collar (WC) family, plays a predominant role. Global transcriptomic techniques have opened new perspectives for the study of photoreceptor functions and have recently been used in Fusarium fujikuroi on a WC protein and a cryptochrome from the DASH family. The data showed that the WC protein participates in the transcriptional control of most of the photoregulated genes, as well as of many genes not regulated by light, while the DASH cryptochrome potentially plays a supporting role in the photoinduction of many genes.

11.
Genes (Basel) ; 14(8)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37628712

RESUMO

In the fungus Fusarium fujikuroi, carotenoid production is up-regulated by light and down-regulated by the CarS RING finger protein, which modulates the mRNA levels of carotenoid pathway genes (car genes). To identify new potential regulators of car genes, we used a biotin-mediated pull-down procedure to detect proteins capable of binding to their promoters. We focused our attention on one of the proteins found in the screening, belonging to the High-Mobility Group (HMG) family that was named HmbC. The deletion of the hmbC gene resulted in increased carotenoid production due to higher mRNA levels of car biosynthetic genes. In addition, the deletion resulted in reduced carS mRNA levels, which could also explain the partial deregulation of the carotenoid pathway. The mutants exhibited other phenotypic traits, such as alterations in development under certain stress conditions, or reduced sensitivity to cell wall degrading enzymes, revealed by less efficient protoplast formation, indicating that HmbC is also involved in other cellular processes. In conclusion, we identified a protein of the HMG family that participates in the regulation of carotenoid biosynthesis. This is probably achieved through an epigenetic mechanism related to chromatin structure, as is frequent in this class of proteins.


Assuntos
Carotenoides , Fusarium , Parede Celular , Epigênese Genética , Fusarium/genética
12.
Commun Biol ; 6(1): 1068, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864015

RESUMO

Various species of ascomycete fungi synthesize the carboxylic carotenoid neurosporaxanthin. The unique chemical structure of this xanthophyll reveals that: (1) Its carboxylic end and shorter length increase the polarity of neurosporaxanthin in comparison to other carotenoids, and (2) it contains an unsubstituted ß-ionone ring, conferring the potential to form vitamin A. Previously, neurosporaxanthin production was optimized in Fusarium fujikuroi, which allowed us to characterize its antioxidant properties in in vitro assays. In this study, we assessed the bioavailability of neurosporaxanthin compared to other provitamin A carotenoids in mice and examined whether it can be cleaved by the two carotenoid-cleaving enzymes: ß-carotene-oxygenase 1 (BCO1) and 2 (BCO2). Using Bco1-/-Bco2-/- mice, we report that neurosporaxanthin displays greater bioavailability than ß-carotene and ß-cryptoxanthin, as evidenced by higher accumulation and decreased fecal elimination. Enzymatic assays with purified BCO1 and BCO2, together with feeding studies in wild-type, Bco1-/-, Bco2-/-, and Bco1-/-Bco2-/- mice, revealed that neurosporaxanthin is a substrate for either carotenoid-cleaving enzyme. Wild-type mice fed neurosporaxanthin displayed comparable amounts of vitamin A to those fed ß-carotene. Together, our study unveils neurosporaxanthin as a highly bioavailable fungal carotenoid with provitamin A activity, highlighting its potential as a novel food additive.


Assuntos
Dioxigenases , beta Caroteno , Camundongos , Animais , Provitaminas , Vitamina A , Disponibilidade Biológica , Carotenoides/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo
13.
Fungal Genet Biol ; 49(9): 684-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22750191

RESUMO

The phytopathogenic fungus Fusarium oxysporum is a model organism in the study of plant-fungus interactions. As other Fusarium species, illuminated cultures of F. oxysporum exhibit an orange pigmentation because of the synthesis of carotenoids, and its genome contains orthologous light-regulated car genes for this biosynthetic pathway. By chemical mutagenesis, we obtained carotenoid overproducing mutants of F. oxysporum, called carS, with upregulated mRNA levels of the car genes. To identify the regulatory gene responsible for this phenotype, a collection of T-DNA insertional mutants obtained by Agrobacterium mediated transformation was screened for carotenoid overproduction. Three candidate transformants exhibited a carS-like phenotype, and two of them contained T-DNA insertions in the same genomic region. The insertions did not affect the integrity of any annotated ORFs, but were linked to a gene coding for a putative RING-finger (RF) protein. Based on its similarity to the RF protein CrgA from the zygomycete Mucor circinelloides, whose mutation results in a similar carotenoid deregulation, this gene (FOXG_09307) was investigated in detail. Its expression was not affected in the transformants, but mutant alleles were found in several carS mutants. A strain carrying a partial FOXG_09307 deletion, fortuitously generated in a targeted transformation experiment, exhibited the carS phenotype. This mutant and a T-DNA insertional mutant holding a 5-bp insertion in FOXG_09307 were complemented with the wild type FOXG_09307 allele. We conclude that this gene is carS, encoding a RF protein involved in down-regulation of F. oxysporum carotenogenesis.


Assuntos
Carotenoides/biossíntese , Fusarium/genética , Fusarium/metabolismo , Sequência de Aminoácidos , DNA Bacteriano/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Mutagênese Insercional , Fases de Leitura Aberta
14.
Appl Environ Microbiol ; 78(20): 7258-66, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865073

RESUMO

Fusarins are a class of mycotoxins of the polyketide family produced by different Fusarium species, including the gibberellin-producing fungus Fusarium fujikuroi. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in other Fusarium strains, we have identified the F. fujikuroi orthologue, called fusA. The participation of fusA in fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by the fusA mRNA levels in the cell. Illumination of the cultures results in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of the fusA gene exhibit no external phenotypic alterations, including morphology and conidiation, except for a lack of the characteristic yellow and/or orange pigmentation of fusarins. Moreover, the fusA mutants are less efficient than the wild type at degrading cellophane on agar cultures, a trait associated with pathogenesis functions in Fusarium oxysporum. The fusA mutants, however, are not affected in their capacities to grow on plant tissues.


Assuntos
Fusarium/enzimologia , Regulação Fúngica da Expressão Gênica , Micotoxinas/metabolismo , Policetídeo Sintases/biossíntese , Policetídeo Sintases/genética , DNA Fúngico/química , DNA Fúngico/genética , Fusarium/genética , Deleção de Genes , Dados de Sequência Molecular , Nitrogênio/metabolismo , Plantas/microbiologia , Análise de Sequência de DNA
15.
Front Bioeng Biotechnol ; 10: 1000129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277400

RESUMO

Fusarium fujikuroi, a model organism for secondary metabolism in fungi, produces carotenoids, terpenoid pigments with antioxidant activity. Previous results indicate that carotenoid synthesis in F. fujikuroi is stimulated by light or by different stress conditions and downregulated by a RING finger protein encoded by carS gene. Here, we have analyzed the effects of three stressors, nitrogen scarcity, heat shock, and oxidative stress. We compared them with the effect of light in the wild type, a carS mutant that overproduces carotenoids, and its complemented strain. The assayed stressors increase the synthesis of carotenoids in the three strains, but mRNA levels of structural genes of carotenogenesis, carRA and carB, are only enhanced in the presence of a functional carS gene. In the wild-type strain, the four conditions affect in different manners the mRNA levels of carS: greater in the presence of light, without significant changes in nitrogen starvation, and with patent decreases after heat shock or oxidative stress, suggesting different activation mechanisms. The spores of the carS mutant are more resistant to H2O2 than those of the wild type; however, the mutant shows a greater H2O2 sensitivity at the growth level, which may be due to the participation of CarS in the regulation of genes with catalase domains, formerly described. A possible mechanism of regulation by heat stress has been found in the alternative splicing of the intron of the carS gene, located close to its 3' end, giving rise to the formation of a shorter protein. This action could explain the inducing effect of the heat shock, but not of the other inducing conditions, which may involve other mechanisms of action on the CarS regulator, either transcriptionally or post-transcriptionally.

16.
Fungal Genet Biol ; 48(2): 132-43, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21073977

RESUMO

Ustilago maydis, the causative agent of corn smut disease, contains two genes encoding members of the carotenoid cleavage oxygenase family, a group of enzymes that cleave double bonds in different substrates. One of them, Cco1, was formerly identified as a ß-carotene cleaving enzyme. Here we elucidate the function of the protein encoded by the second gene, termed here as Ustilago maydis Resveratrol cleavage oxygenase 1 (Um Rco1). In vitro incubations of heterologously expressed and purified UM Rco1 with different carotenoid and stilbene substrates demonstrate that it cleaves the interphenyl Cα-Cß double bond of the phytoalexin resveratrol and its derivative piceatannol. Um Rco1 exhibits a high degree of substrate specificity, as suggested by the lack of activity on carotenoids and the other resveratrol-related compounds tested. The activity of Um Rco1 was confirmed by incubation of U. maydis rco1 deletion and over-expression strains with resveratrol. Furthermore, treatment with resveratrol resulted in striking alterations of cell morphology. However, pathogenicity assays indicated that Um rco1 is largely dispensable for biotrophic development. Our work reveals Um Rco1 as the first eukaryotic resveratrol cleavage enzyme identified so far. Moreover, Um Rco1 represents a subfamily of fungal enzymes likely involved in the degradation of stilbene compounds, as suggested by the cleavage of resveratrol by homologs from Aspergillus fumigatus, Chaetomium globosum and Botryotinia fuckeliana.


Assuntos
Oxigenases/metabolismo , Estilbenos/metabolismo , Ustilago/enzimologia , Carotenoides/metabolismo , Deleção de Genes , Expressão Gênica , Oxigenases/genética , Oxigenases/isolamento & purificação , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Resveratrol , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ustilago/genética , Ustilago/metabolismo
17.
Microb Cell Fact ; 10: 40, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21609467

RESUMO

BACKGROUND: Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been previously shown that bacterial mutants lacking phosphoglucose isomerase (PGI) produce more nucleotide precursors and amino acids. PGI catalyzes the second step of glycolysis, the formation of fructose-6-P from glucose-6-P. RESULTS: We deleted the gene pgi1, encoding PGI, in the T. reesei strain Rut-C30 and we introduced the cre1 gene in a Δpgi1 mutant. Both Δpgi1 and cre1+Δpgi1 mutants showed a pellet-like and growth as well as morphological alterations compared with Rut-C30. None of the mutants grew in media with fructose, galactose, xylose, glycerol or lactose but they grew in media with glucose, with fructose and glucose, with galactose and fructose or with lactose and fructose. No growth was observed in media with xylose and glucose. On glucose, Δpgi1 and cre1+Δpgi1 mutants showed higher cellulase activity than Rut-C30 and QM6a, respectively. But in media with lactose, none of the mutants improved the production of the reference strains. The increase in the activity did not correlate with the expression of mRNA of the xylanase regulator gene, xyr1. Δpgi1 mutants were also affected in the extracellular ß-galactosidase activity. Levels of mRNA of the glucose 6-phosphate dehydrogenase did not increase in Δpgi1 during growth on glucose. CONCLUSIONS: The ability to grow in media with glucose as the sole carbon source indicated that Trichoderma Δpgi1 mutants were able to use the pentose phosphate pathway. But, they did not increase the expression of gpdh. Morphological characteristics were the result of the pgi1 deletion. Deletion of pgi1 in Rut-C30 increased cellulase production, but only under repressing conditions. This increase resulted partly from the deletion itself and partly from a genetic interaction with the cre1-1 mutation. The lower cellulase activity of these mutants in media with lactose could be attributed to a reduced ability to hydrolyse this sugar but not to an effect on the expression of xyr1.


Assuntos
Carbono/metabolismo , Celulase/biossíntese , Proteínas Fúngicas/genética , Glucose-6-Fosfato Isomerase/genética , Trichoderma/metabolismo , Celulase/genética , Frutose/metabolismo , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Mutação , Trichoderma/citologia , Trichoderma/genética , Trichoderma/crescimento & desenvolvimento , Xilose/metabolismo
18.
Noncoding RNA ; 7(3)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34449676

RESUMO

Carotenoid biosynthesis in the fungus Fusarium fujikuroi is regulated by environmental factors, with light being the main stimulating signal. The CarS RING-finger protein plays an important role in the downregulation of structural genes of the carotenoid pathway. A recent transcriptomic analysis on the effect of carS mutation identified a gene for a long non-coding RNA (lncRNA) upstream of carS, called carP, the deletion of which results in increased carS mRNA levels and lack of carotenoid production. We have investigated the function of carP by studying the transcriptomic effect of its deletion and the phenotypes resulting from the reintroduction of carP to a deletion strain. The RNA-seq data showed that the loss of carP affected the mRNA levels of hundreds of genes, especially after illumination. Many of these changes appeared to be cascade effects as a result of changes in carS expression, as suggested by the comparison with differentially expressed genes in a carS mutant. Carotenoid production only recovered when carP was integrated upstream of carS, but not at other genomic locations, indicating a cis-acting mechanism on carS. However, some genes hardly affected by CarS were strongly upregulated in the carP mutant, indicating that carP may have other regulatory functions as an independent regulatory element.

19.
Appl Microbiol Biotechnol ; 87(1): 21-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20376635

RESUMO

Bikaverin is a reddish pigment produced by different fungal species, most of them from the genus Fusarium, with antibiotic properties against certain protozoa and fungi. Chemically, bikaverin is a polyketide with a tetracyclic benzoxanthone structure, resulting from the activity of a specific class I multifunctional polyketide synthase and subsequent group modifications introduced by a monooxygenase and an O-methyltransferase. In some fungi, bikaverin is found with smaller amounts of a precursor molecule, called norbikaverin. Production of these metabolites by different fungal species depends on culture conditions, but it is mainly affected by nitrogen availability and pH. Regulation of the pathway has been investigated in special detail in the gibberellin-producing fungus Fusarium fujikuroi, whose genes and enzymes responsible for bikaverin production have been recently characterized. In this fungus, the synthesis is induced by nitrogen starvation and acidic pH, and it is favored by other factors, such as aeration, sulfate and phosphate starvation, or sucrose availability. Some of these inducing agents increase mRNA levels of the enzymatic genes, organized in a coregulated cluster. The biological properties of bikaverin include antitumoral activity against different cancer cell lines. The diverse biological activities and the increasing information on the biochemical and genetic basis of its production make bikaverin a metabolite of increasing biotechnological interest.


Assuntos
Antineoplásicos/metabolismo , Fusarium/metabolismo , Xantonas/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Humanos , Xantonas/farmacologia
20.
Appl Microbiol Biotechnol ; 85(6): 1991-2000, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19838698

RESUMO

The fungus Fusarium fujikuroi (Gibberella fujikuroi mating group C) exhibits a rich secondary metabolism that includes the synthesis of compounds of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. The effect of the carbon source on their production was checked using a two-phase incubation protocol, in which nine different sugars were added upon transfer of the fungus from repressed to appropriate inducing conditions, i.e., nitrogen starvation for gibberellins and bikaverin and illumination for carotenoids production. Most of the carbon sources allowed the synthesis of these metabolites in significant amounts. However, bikaverin production was strongly increased by the presence of sucrose in comparison to other carbon sources, an effect not exhibited for the production of gibberellins and carotenoids. The bikaverin inducing effect was enhanced in the absence of phosphate and/or sulfate. Similar results were also observed in carotenoid-overproducing strains known to be altered in bikaverin production. The induction by salt starvation, but not by sucrose, correlated with an increase in messenger RNA levels of gene bik1, encoding a polyketide synthase of the bikaverin pathway.


Assuntos
Fusarium/metabolismo , Sacarose/metabolismo , Xantonas/metabolismo , Fusarium/crescimento & desenvolvimento , Proteínas Associadas aos Microtúbulos , Fosfatos , Policetídeo Sintases/biossíntese , RNA Mensageiro/biossíntese , Proteínas de Saccharomyces cerevisiae , Sulfatos , Edulcorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA