Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 30(15): 3747-3767, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34021651

RESUMO

Several key evolutionary events marked the evolution of geminiviruses, culminating with the emergence of divided (bipartite) genomes represented by viruses classified in the genus Begomovirus. This genus represents the most abundant group of multipartite viruses, contributing significantly to the observed abundance of multipartite species in the virosphere. Although aspects related to virus-host interactions and evolutionary dynamics have been extensively studied, the bipartite nature of these viruses has been little explored in evolutionary studies. Here, we performed a parallel evolutionary analysis of the DNA-A and DNA-B segments of New World begomoviruses. A total of 239 full-length DNA-B sequences obtained in this study, combined with 292 DNA-A and 76 DNA-B sequences retrieved from GenBank, were analysed. The results indicate that the DNA-A and DNA-B respond differentially to evolutionary processes, with the DNA-B being more permissive to variation and more prone to recombination than the DNA-A. Although a clear geographic segregation was observed for both segments, differences in the genetic structure between DNA-A and DNA-B were also observed, with cognate segments belonging to distinct genetic clusters. DNA-B coding regions evolve under the same selection pressures than DNA-A coding regions. Together, our results indicate an interplay between reassortment and recombination acting at different levels across distinct subpopulations and segments.


Assuntos
Begomovirus , Sequência de Bases , Begomovirus/genética , DNA Viral/genética , Evolução Molecular , Genoma Viral/genética , Filogenia , Doenças das Plantas
2.
J Virol ; 87(10): 5784-99, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487451

RESUMO

The incidence of begomovirus infections in crop plants sharply increased in Brazil during the 1990s following the introduction of the invasive B biotype of the whitefly vector, Bemisia tabaci. It is believed that this biotype transmitted begomoviruses from noncultivated plants to crop species with greater efficiency than indigenous B. tabaci biotypes. Either through rapid host adaptation or selection pressure in genetically diverse populations of noncultivated hosts, over the past 20 years various previously unknown begomovirus species have became progressively more prevalent in cultivated species such as tomato. Here we assess the genetic structure of begomovirus populations infecting tomatoes and noncultivated hosts in southeastern Brazil. Between 2005 and 2010, we sampled and sequenced 126 DNA-A and 58 DNA-B full-length begomovirus components. We detected nine begomovirus species in tomatoes and eight in the noncultivated host samples, with four species common to both tomatoes and noncultivated hosts. Like many begomoviruses, most species are obvious interspecies recombinants. Furthermore, species identified in tomato have probable parental viruses from noncultivated hosts. While the population structures of five well-sampled viral species all displayed geographical subdivision, a noncultivated host-infecting virus was more genetically variable than the four predominantly tomato-infecting viruses.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Variação Genética , Filogeografia , Recombinação Genética , Solanum lycopersicum/virologia , Begomovirus/isolamento & purificação , Brasil , DNA Viral/química , DNA Viral/genética , Evolução Molecular , Dados de Sequência Molecular , Doenças das Plantas/virologia , Análise de Sequência de DNA
3.
Virol J ; 11: 66, 2014 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-24708727

RESUMO

BACKGROUND: Begomoviruses are dicot-infecting, whitefly-transmitted viruses with a genome comprised of one or two molecules of circular, single-stranded DNA. In Brazil, tomato-infecting begomoviruses have emerged as serious pathogens since the introduction of a new biotype of the insect vector in the mid-1990's. Tomato rugose mosaic virus (ToRMV) and Tomato severe rugose virus (ToSRV) are often found in tomato fields. The complete sequence of the DNA-B components of ToSRV and ToRMV show an identity of 98.2%. Additionally, the high nucleotide identity (96.2%) between their common regions indicates that these two viruses may share the same DNA-B. METHODS: Tomato seedlings were biolistically inoculated with ToSRV (DNA-A and DNA-B) and ToRMV (DNA-A and DNA-B) infectious clones in every possible combination of single or mixed infection. Symptom expression was evaluated for up to 35 days post-inoculation (dpi). DNA was extracted at 28 dpi and the presence of each viral genomic component was examined by rolling circle amplification (RCA) followed by digestion, as well as by quantitative, real-time PCR. Sequence comparisons, recombination and phylogenetic analyzes were performed using EMBOSS needle, RDP program and maximum likelihood inference, respectively. RESULTS: Symptoms in tomato plants inoculated with the different combinations of ToRMV and ToSRV DNA-A and DNA-B components consisted of a typical mosaic in all combinations. Pseudorecombinants were formed in all possible combinations. When two DNA-A or two DNA-B components were inoculated simultaneously, the ToRMV components were detected preferentially in relation to the ToSRV components. The combination of minor changes in both the Rep protein and the CR may be involved in the preferential replication of ToRMV components. Recombination and phylogenetic analyzes support the exchange of genetic material between ToRMV and ToSRV. CONCLUSIONS: ToRMV and ToSRV form viable pseudorecombinants in their natural host (Solanum lycopersicum) and share the same DNA-B. ToRMV DNA components are preferentially replicated over ToSRV components. These results indicate that the emergence of ToRMV involved both recombination and pseudorecombination, further highlighting the importance of these mechanisms in the emergence and adaptation of begomoviruses.


Assuntos
Begomovirus/genética , DNA Viral/genética , Doenças das Plantas/virologia , Recombinação Genética , Solanum lycopersicum/virologia , Begomovirus/isolamento & purificação , Brasil , DNA Viral/isolamento & purificação , Genótipo , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA
4.
Arch Virol ; 159(8): 2127-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24623091

RESUMO

Viral diseases caused by begomoviruses are of economic importance due to their adverse effects on the production of tropical and subtropical crops. In Ecuador, despite reports of significant infestations of Bemisia tabaci in the late 1990s, only very recently has a begomovirus, tomato leaf deformation virus (ToLDeV, also present in Peru), been reported in tomato. ToLDeV is the first monopartite begomovirus discovered that originated in the Americas, and its presence in Ecuador highlights the need for a wider survey of tomato-infecting begomoviruses in this country. Tomato and weed samples were collected in 2010 and 2011 in six provinces of Ecuador, and begomovirus genomes were cloned and sequenced using a rolling-circle-amplification-based approach. Most tomato samples from the provinces of Guayas, Loja, Manabi and Santa Elena were infected with tomato leaf deformation virus (ToLDeV). One sample from Manabi had a triple infection with ToLDeV, rhynchosia golden mosaic Yucatan virus (RhGMYuV) and an isolate that was a recombinant between the two. A new begomovirus was detected in another tomato sample from Manabi. Samples of Rhynchosia sp. from the provinces of Guayas and Manabi were infected by RhGMYuV. These results indicate not only the prevalence of ToLDeV in tomato in Ecuador but also the presence of other viruses, albeit at a much lower frequency.


Assuntos
Begomovirus/genética , Begomovirus/isolamento & purificação , Biodiversidade , Doenças das Plantas/virologia , Plantas Daninhas/virologia , Recombinação Genética , Solanum lycopersicum/virologia , Sequência de Bases , Begomovirus/classificação , Equador , Evolução Molecular , Genoma Viral , Dados de Sequência Molecular , Filogenia
5.
J Gen Virol ; 94(Pt 2): 418-431, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23136367

RESUMO

Begomoviruses are ssDNA plant viruses that cause serious epidemics in economically important crops worldwide. Non-cultivated plants also harbour many begomoviruses, and it is believed that these hosts may act as reservoirs and as mixing vessels where recombination may occur. Begomoviruses are notoriously recombination-prone, and also display nucleotide substitution rates equivalent to those of RNA viruses. In Brazil, several indigenous begomoviruses have been described infecting tomatoes following the introduction of a novel biotype of the whitefly vector in the mid-1990s. More recently, a number of viruses from non-cultivated hosts have also been described. Previous work has suggested that viruses infecting non-cultivated hosts have a higher degree of genetic variability compared with crop-infecting viruses. We intensively sampled cultivated and non-cultivated plants in similarly sized geographical areas known to harbour either the weed-infecting Macroptilium yellow spot virus (MaYSV) or the crop-infecting Tomato severe rugose virus (ToSRV), and compared the molecular evolution and population genetics of these two distantly related begomoviruses. The results reinforce the assertion that infection of non-cultivated plant species leads to higher levels of standing genetic variability, and indicate that recombination, not adaptive selection, explains the higher begomovirus variability in non-cultivated hosts.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Variação Genética , Doenças das Plantas/virologia , Plantas/virologia , Recombinação Genética , Brasil , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
6.
Arch Virol ; 153(10): 1985-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18726171

RESUMO

The incidence of tomato-infecting begomoviruses has sharply increased in Brazil following the introduction of the B biotype of the whitefly vector in the early 1990s. Five definitive species and six tentative species have been described since then. Here, we report the detection of members of an additional six novel species, three in tomato and three infecting weeds that are commonly associated with tomato fields: Blainvillea rhomboidea, Sida rhombifolia and Sida micrantha. Tomato and weed samples were collected in two major tomato-growing regions of southeastern Brazil in 2005 and 2007. Two of the novel viruses were present in tomato plants collected in Paty do Alferes, Rio de Janeiro state. Three novel viruses were present in weed samples collected in Coimbra, Minas Gerais state. One virus was present in tomato samples collected at both locations. Genome features indicate that all six species are typical New World, bipartite begomoviruses. However, the viruses belonging to two of the novel species did not cluster with the Brazilian viruses in a phylogenetic tree. These species could represent a distinct lineage of New World begomoviruses, found in Brazil for the first time.


Assuntos
Asteraceae/virologia , Begomovirus/classificação , Begomovirus/isolamento & purificação , Malvaceae/virologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Begomovirus/genética , Brasil , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
7.
Virus Evol ; 3(1): vex005, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28458915

RESUMO

Begomoviruses (single-stranded DNA plant viruses) are responsible for serious agricultural threats. Begomovirus populations exhibit a high degree of within-host genetic variation and evolve as quickly as RNA viruses. Although the recombination-prone nature of begomoviruses has been extensively demonstrated, the relative contribution of recombination and mutation to the genetic variation of begomovirus populations has not been assessed. We estimated the genetic variability of begomovirus datasets from around the world. An uneven distribution of genetic variation across the length of the cp and rep genes due to recombination was evident from our analyses. To estimate the relative contributions of recombination and mutation to the genetic variability of begomoviruses, we mapped all substitutions over maximum likelihood trees and counted the number of substitutions on branches which were associated with recombination (ηr) and mutation (ηµ). In addition, we also estimated the per generation relative rates of both evolutionary mechanisms (r/µ) to express how frequently begomovirus genomes are affected by recombination relative to mutation. We observed that the composition of genetic variation in all begomovirus datasets was dominated by mutation. Additionally, the low correlation between the estimates indicated that the relative contributions of recombination and mutation are not necessarily a function of their relative rates. Our results show that, although a considerable fraction of the genetic variation levels could be assigned to recombination, it was always lower than that due to mutation, indicating that the diversification of begomovirus populations is predominantly driven by mutational dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA