Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Small ; 12(15): 2085-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26929006

RESUMO

Boronic acid (BA), known to be a reversible glucose-sensing material, is conjugated to a nanogel (NG) derived from hyaluronic acid biopolymer and used as a guest material for a carbon multiwalled nanotube (MWNT) yarn. By exploiting the swelling/deswelling of the NG that originates from the internal anionic charge changes resulting from BA binding to glucose, a NG MWNT yarn artificial muscle is obtained that provides reversible torsional actuation that can be used for glucose sensing. This actuator shows a short response time and high sensitivity (in the 5-100 × 10(-3) m range) for monitoring changes in glucose concentration in physiological buffer, without using any additional auxiliary substances or an electrical power source. It may be possible to apply the glucose-sensing MWNT yarn muscles as implantable glucose sensors that automatically release drugs when needed or as an artificial pancreas.


Assuntos
Órgãos Artificiais , Técnicas Biossensoriais/métodos , Glucose/análise , Músculos/metabolismo , Nanotubos de Carbono/química , Ácidos Borônicos/síntese química , Ácidos Borônicos/química , Colesterol/química , Ácido Hialurônico/química , Nanogéis , Nanotubos de Carbono/ultraestrutura , Polietilenoglicóis/química , Polietilenoimina/química , Torção Mecânica
2.
Sci Rep ; 13(1): 21799, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066058

RESUMO

Carbon nanotubes (CNTs) have the potential to promote peripheral nerve regeneration, although with limited capacity and foreign body reaction. This study investigated whether CNTs hydrophilized by oxidation can improve peripheral nerve regeneration and reduce foreign body reactions and inflammation. Three different artificial nerve conduit models were created using CNTs treated with ozone (O group), strong acid (SA group), and untreated (P group). They were implanted into a rat sciatic nerve defect model and evaluated after 8 and 16 weeks. At 16 weeks, the SA group showed significant recovery in functional and electrophysiological evaluations compared with the others. At 8 weeks, histological examination revealed a significant increase in the density of regenerated neurofilament and decreased foreign body giant cells in the SA group compared with the others. Oxidation-treated CNTs improved biocompatibility, induced nerve regeneration, and inhibited foreign-body reactions.


Assuntos
Nanotubos de Carbono , Ratos , Animais , Nervo Isquiático/fisiologia , Regeneração Nervosa/fisiologia , Próteses e Implantes , Crescimento Neuronal
3.
Nano Lett ; 11(10): 4227-31, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21861474

RESUMO

Utilizing highly oriented multiwalled carbon nanotube aerogel sheets, we fabricated micrometer-thick freestanding carbon nanotube (CNT) polarizers. Simple winding of nanotube sheets on a U-shaped polyethylene reel enabled rapid and reliable polarizer fabrication, bypassing lithography or chemical etching processes. With the remarkable extinction ratio reaching ∼37 dB in the broad spectral range from 0.1 to 2.0 THz, combined with the extraordinary gravimetric mechanical strength of CNTs, and the dispersionless character of freestanding sheets, the commercialization prospects for our CNT terahertz polarizers appear attractive.

4.
Nanotechnology ; 22(20): 205102, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21444962

RESUMO

Here we culture Chinese hamster ovary cells on isotropic, aligned and patterned substrates based on multiwall carbon nanotubes. The nanotubes provide the substrate with nanoscale topography. The cells adhere to and grow on all substrates, and on the aligned substrate, the cells align strongly with the axis of the bundles of the multiwall nanotubes. This control over cell alignment is required for tissue engineering; almost all tissues consist of oriented cells. The aligned substrates are made using straightforward physical chemistry techniques from forests of multiwall nanotubes; no lithography is required to make inexpensive large-scale substrates with highly aligned nanoscale grooves. Interestingly, although the cells strongly align with the nanoscale grooves, only a few also elongate along this axis: alignment of the cells does not require a pronounced change in morphology of the cell. We also pattern the nanotube bundles over length scales comparable to the cell size and show that the cells follow this pattern.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Microscopia de Força Atômica , Microscopia Confocal , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/ultraestrutura , Fatores de Tempo
5.
Nano Lett ; 10(7): 2374-80, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20507157

RESUMO

The application of solid-state fabricated carbon nanotube sheets as thermoacoustic projectors is extended from air to underwater applications, thereby providing surprising results. While the acoustic generation efficiency of a liquid immersed nanotube sheet is profoundly degraded by nanotube wetting, the hydrophobicity of the nanotube sheets in water results in an air envelope about the nanotubes that increases pressure generation efficiency a hundred-fold over that obtained by immersion in wetting alcohols. Due to nonresonant sound generation, the emission spectrum of a liquid-immersed nanotube sheet varies smoothly over a wide frequency range, 1-10(5) Hz. The sound projection efficiency of nanotube sheets substantially exceeds that of much heavier and thicker ferroelectric acoustic projectors in the important region below about 4 kHz, and this performance advantage increases with decreasing frequency. While increasing thickness by stacking sheets eventually degrades performance due to decreased ability to rapidly transform thermal energy to acoustic pulses, use of tandem stacking of separated nanotube sheets (that are addressed with phase delay) eliminates this problem. Encapsulating the nanotube sheet projectors in argon provided attractive performance at needed low frequencies, as well as a realized energy conversion efficiency in air of 0.2%, which can be enhanced by increasing the modulation of temperature.

6.
Sci Rep ; 11(1): 19562, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599218

RESUMO

Carbon nanotubes (CNTs) are cylindrical nanostructures and have unique properties, including flexibility, electrical conductivity, and biocompatibility. We focused on CNTs fabricated with the carbon nanotube yarns (cYarn) as a possible substrate promoting peripheral nerve regeneration with these properties. We bridged a 15 mm rat sciatic nerve defect with five different densities of cYarn. Eight weeks after the surgery, the regenerated axons crossing the CNTs, electromyographical findings, and muscle weight ratio of the lower leg showed recovery of the nerve function by interfacing with cYarn. Furthermore, the sciatic nerve functional index (SFI) at 16 weeks showed improvement in gait function. A 2% CNT density tended to be the most effective for nerve regeneration as measured by both histological axonal regeneration and motor function. We confirmed that CNT yarn promotes peripheral nerve regeneration by using it as a scaffold for repairing nerve defects. Our results support the future clinical application of CNTs for bridging nerve defects as an off-the-shelf material.


Assuntos
Nanotubos de Carbono , Regeneração Nervosa , Crescimento Neuronal , Traumatismos dos Nervos Periféricos/terapia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Imuno-Histoquímica , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Tamanho do Órgão , Traumatismos dos Nervos Periféricos/diagnóstico , Traumatismos dos Nervos Periféricos/etiologia , Ratos , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiologia , Nervo Isquiático/fisiopatologia , Alicerces Teciduais/química , Resultado do Tratamento
7.
Science ; 366(6462): 216-221, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601765

RESUMO

Higher-efficiency, lower-cost refrigeration is needed for both large- and small-scale cooling. Refrigerators using entropy changes during cycles of stretching or hydrostatic compression of a solid are possible alternatives to the vapor-compression fridges found in homes. We show that high cooling results from twist changes for twisted, coiled, or supercoiled fibers, including those of natural rubber, nickel titanium, and polyethylene fishing line. Using opposite chiralities of twist and coiling produces supercoiled natural rubber fibers and coiled fishing line fibers that cool when stretched. A demonstrated twist-based device for cooling flowing water provides high cooling energy and device efficiency. Mechanical calculations describe the axial and spring-index dependencies of twist-enhanced cooling and its origin in a phase transformation for polyethylene fibers.

8.
ACS Appl Mater Interfaces ; 9(31): 26286-26292, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28726370

RESUMO

Stretchable conductors can be used in various applications depending on their own characteristics. Here, we demonstrate simple and robust elastomeric conductors that are optimized for stretchable electrical signal transmission line. They can withstand strains up to 600% without any substantial change in their resistance (≤10% as is and ≤1% with passivation), and exhibit suppressed charge fluctuations in the medium. The inherent elasticity of a polymeric rubber and the high conductivity of flexible, highly oriented carbon nanotube sheets were combined synergistically, without losing both properties. The nanoscopic strong adhesion between aligned carbon nanotube arrays and strained elastomeric polymers induces conductive wavy folds with microscopic bending of radii on the scale of a few micrometers. Such features enable practical applications such as in elastomeric length-changeable electrical digital and analog signal transmission lines at above MHz frequencies. In addition to reporting basic direct current, alternating current, and noise characterizations of the elastomeric conductors, various examples as a stretchable signal transmission line up to 600% strains are presented by confirming the capability of transmitting audio and video signals, as well as low-frequency medical signals without information distortion.

9.
Nanoscale ; 8(6): 3248-53, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26806884

RESUMO

Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation.


Assuntos
Resinas Acrílicas/química , Órgãos Artificiais , Glucose Oxidase/química , Hidrogéis/química , Músculo Esquelético , Nanotubos de Carbono/química , Enzimas Imobilizadas/química
10.
Nanomicro Lett ; 8(3): 254-259, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30460285

RESUMO

Many temperature indicators or sensors show color changes for materials used in food and medical fields. However, they are not helpful for a color-blind person or children who lack judgment. In this paper, we introduce simply fabricated and more useful low-temperature indicator (~30 °C) for devices that actuates using paraffin-infiltrated multi-walled carbon nanotube (MWCNT) coiled yarn. The density difference of MWCNT yarn provides large strain (~330 %) when heat causes the melted polymer to move. Furthermore, the MWCNT yarn decreases the melting point of paraffin. These properties allow control of the actuating temperature. In addition, mechanical strength was enhanced by MWCNT than previously reported temperature-responsive actuators based on shape memory polymers. This simply fabricated temperature indicator can be applied in latching devices for medical and biological fields.

11.
Sci Rep ; 6: 26687, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27220918

RESUMO

There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Relaxamento Muscular , Mioblastos/metabolismo , Nanotubos de Carbono/química , Alicerces Teciduais/química , Animais , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Engenharia Tecidual/métodos
12.
Nanoscale ; 7(6): 2489-96, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25567113

RESUMO

Torsional behaviors of polymer-infiltrated carbon nanotube (CNT) yarn muscles have been investigated in relation to molecular architecture by using atomic force microscopy (AFM). Two polymers with different stiffnesses, polystyrene (PS) and poly(styrene-b-isoprene-b-styrene) (SIS), were uniformly infiltrated into CNT yarns for electrothermal torsional actuation. The torsional behaviors of hybrid yarn muscles are completely explained by the volume change of each polymer, based on the height and full width at half maximum profiles from the AFM morphological images. The volume expansion of the PS yarn muscle (1.7 nm of vertical change and 22 nm of horizontal change) is much larger than that of the SIS yarn muscle (0.3 nm and 11 nm change in vertical and horizontal directions) at 80 °C, normalized by their values at 25 °C. We demonstrate that their maximum rotations are consequently 29.7 deg mm(-1) for the PS-infiltrated CNT yarn muscle (relatively larger rotation) and 14.4 deg mm(-1) for the SIS-infiltrated CNT yarn muscle (smaller rotation) at 0.75 V m(-1). These hybrid yarn muscles could be applied in resonant controllers or damping magnetoelectric sensors.

13.
Adv Mater ; 26(13): 2059-65, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24353070

RESUMO

Electrochemical deposition of MnO2 onto carbon nanotube (CNT) yarn gives a high-performance, flexible yarn supercapacitor. The hybrid yarn's blended structure, resulting from trapping of MnO2 in its internal pores, effectively enlarges electrochemical area and reduces charge diffusion length. Accordingly, the yarn supercapacitor exhibits high values of capacitance, energy density, and average power density. Applications in wearable electronics can be envisaged.

14.
Nat Commun ; 5: 3322, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24557457

RESUMO

Torsional artificial muscles generating fast, large-angle rotation have been recently demonstrated, which exploit the helical configuration of twist-spun carbon nanotube yarns. These wax-infiltrated, electrothermally powered artificial muscles are torsionally underdamped, thereby experiencing dynamic oscillations that complicate positional control. Here, using the strategy spiders deploy to eliminate uncontrolled spinning at the end of dragline silk, we have developed ultrafast hybrid carbon nanotube yarn muscles that generated a 9,800 r.p.m. rotation without noticeable oscillation. A high-loss viscoelastic material, comprising paraffin wax and polystyrene-poly(ethylene-butylene)-polystyrene copolymer, was used as yarn guest to give an overdamped dynamic response. Using more than 10-fold decrease in mechanical stabilization time, compared with previous nanotube yarn torsional muscles, dynamic mirror positioning that is both fast and accurate is demonstrated. Scalability to provide constant volumetric torsional work capacity is demonstrated over a 10-fold change in yarn cross-sectional area, which is important for upscaled applications.


Assuntos
Órgãos Artificiais , Músculos , Nanotubos de Carbono/química , Seda/química , Animais , Aranhas
15.
ACS Appl Mater Interfaces ; 6(13): 10373-80, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24933259

RESUMO

Here, we explore the use of two- and three-dimensional scaffolds of multiwalled-carbon nanotubes (MWNTs) for hepatocyte cell culture. Our objective is to study the use of these scaffolds in liver tissue engineering and drug discovery. In our experiments, primary rat hepatocytes, the parenchymal (main functional) cell type in the liver, were cultured on aligned nanogrooved MWNT sheets, MWNT yarns, or standard 2-dimensional culture conditions as a control. We find comparable cell viability between all three culture conditions but enhanced production of the hepatocyte-specific marker albumin for cells cultured on MWNTs. The basal activity of two clinically relevant cytochrome P450 enzymes, CYP1A2 and CYP3A4, are similar on all substrates, but we find enhanced induction of CYP1A2 for cells on the MWNT sheets. Our data thus supports the use of these substrates for applications including tissue engineering and enhancing liver-specific functions, as well as in in vitro model systems with enhanced predictive capability in drug discovery and development.


Assuntos
Descoberta de Drogas , Fígado/citologia , Nanotubos de Carbono , Engenharia Tecidual , Animais , Células Cultivadas , Microscopia Eletrônica de Varredura , Ratos
16.
Nat Commun ; 5: 3928, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24887514

RESUMO

Biofuel cells that generate electricity from glucose in blood are promising for powering implantable biomedical devices. Immobilizing interconnected enzyme and redox mediator in a highly conducting, porous electrode maximizes their interaction with the electrolyte and minimizes diffusion distances for fuel and oxidant, thereby enhancing power density. Here we report that our separator-free carbon nanotube yarn biofuel cells provide an open-circuit voltage of 0.70 V, and a maximum areal power density of 2.18 mW cm(-2) that is three times higher than for previous carbon nanotube yarn biofuel cells. Biofuel cell operation in human serum provides high areal power output, as well as markedly increased lifetime (83% remained after 24 h), compared with previous unprotected biofuel cells. Our biscrolled yarn biofuel cells are woven into textiles having the mechanical robustness needed for implantation for glucose energy harvesting.


Assuntos
Fontes de Energia Bioelétrica , Glicemia , Nanotubos de Carbono , Têxteis , Terapia por Estimulação Elétrica/instrumentação , Desenho de Equipamento , Humanos , Bombas de Infusão Implantáveis , Oxirredução
17.
Science ; 343(6173): 868-72, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24558156

RESUMO

The high cost of powerful, large-stroke, high-stress artificial muscles has combined with performance limitations such as low cycle life, hysteresis, and low efficiency to restrict applications. We demonstrated that inexpensive high-strength polymer fibers used for fishing line and sewing thread can be easily transformed by twist insertion to provide fast, scalable, nonhysteretic, long-life tensile and torsional muscles. Extreme twisting produces coiled muscles that can contract by 49%, lift loads over 100 times heavier than can human muscle of the same length and weight, and generate 5.3 kilowatts of mechanical work per kilogram of muscle weight, similar to that produced by a jet engine. Woven textiles that change porosity in response to temperature and actuating window shutters that could help conserve energy were also demonstrated. Large-stroke tensile actuation was theoretically and experimentally shown to result from torsional actuation.


Assuntos
Fibra de Algodão , Nylons , Resistência à Tração , Torção Mecânica , Humanos , Músculos/química , Músculos/ultraestrutura , Polímeros , Porosidade
18.
Nat Commun ; 4: 1970, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23733169

RESUMO

Flexible, wearable, implantable and easily reconfigurable supercapacitors delivering high energy and power densities are needed for electronic devices. Here we demonstrate weavable, sewable, knottable and braidable yarns that function as high performance electrodes of redox supercapacitors. A novel technology, gradient biscrolling, provides fast-ion-transport yarn in which hundreds of layers of conducting-polymer-infiltrated carbon nanotube sheet are scrolled into ~20 µm diameter yarn. Plying the biscrolled yarn with a metal wire current collector increases power generation capabilities. The volumetric capacitance is high (up to ~179 F cm(-3)) and the discharge current of the plied yarn supercapacitor linearly increases with voltage scan rate up to ~80 V s(-1) and ~20 V s(-1) for liquid and solid electrolytes, respectively. The exceptionally high energy and power densities for the complete supercapacitor, and high cycle life that little depends on winding or sewing (92%, 99% after 10,000 cycles, respectively) are important for the applications in electronic textiles.

19.
ACS Nano ; 6(1): 327-34, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22168757

RESUMO

We report mechanically robust, electrically conductive, free-standing, and transparent hybrid nanomembranes made of densified carbon nanotube sheets that were coated with poly(3,4-ethylenedioxythiophene) using vapor phase polymerization and their performance as supercapacitors. The hybrid nanomembranes with thickness of ~66 nm and low areal density of ~15 µg/cm(2)exhibited high mechanical strength and modulus of 135 MPa and 12.6 GPa, respectively. They also had remarkable shape recovery ability in liquid and at the liquid/air interface unlike previous carbon nanotube sheets. The hybrid nanomembrane attached on a current collector had volumetric capacitance of ~40 F/cm(3) at 100 V s(-1) (~40 and ~80 times larger than that of onion-like carbon measured at 100 V s(-1) and activated carbon measured at 20 V s(-1), respectively), and it showed rectangular shapes of cyclic voltammograms up to ~5 V s(-1). High mechanical strength and flexibility of the hybrid nanomembrane enabled twisting it into microsupercapacitor yarns with diameters of ~30 µm. The yarn supercapacitor showed stable cycling performance without a metal current collector, and its capacitance decrease was only ~6% after 5000 cycles. Volumetric energy and power density of the hybrid nanomembrane was ~70 mWh cm(-3) and ~7910 W cm(-3), and the yarn possessed the energy and power density of ~47 mWh cm(-3) and ~538 W cm(-3).


Assuntos
Capacitância Elétrica , Fontes de Energia Elétrica , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Têxteis , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
20.
Science ; 338(6109): 928-32, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23161994

RESUMO

Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.


Assuntos
Contração Muscular , Músculos/química , Nanotubos de Carbono , Resistência à Tração , Absorção , Eletricidade , Temperatura Alta , Hidrogênio/química , Músculos/ultraestrutura , Óptica e Fotônica , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA