RESUMO
Owing to their tunable properties, hydrogels comprised of stimuli-sensitive polymers are one of the most appealing scaffolds with applications in tissue engineering, drug delivery and other biomedical fields. We previously reported a thermoresponsive hydrogel formed using a coiled-coil protein, Q. Here, we expand our studies to identify the gelation of Q protein at distinct pH conditions, creating a protein hydrogel system that is sensitive to temperature and pH. Through secondary structure analysis, transmission electron microscopy, and rheology, we observed that Q self-assembles and forms fiber-based hydrogels exhibiting upper critical solution temperature behavior with increased elastic properties at pH 7.4 and pH 10. At pH 6, however, Q forms polydisperse nanoparticles, which do not further self-assemble and undergo gelation. The high net positive charge of Q at pH 6 creates significant electrostatic repulsion, preventing its gelation. This study will potentially guide the development of novel scaffolds and functional biomaterials that are sensitive towards biologically relevant stimuli.
Assuntos
Materiais Biocompatíveis , Hidrogéis , Estrutura Secundária de Proteína , Reologia , Engenharia TecidualRESUMO
Affordable sequencing and genotyping methods are essential for large scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, non-human model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping-by-sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping-by-sequencing and more recently generated by low-coverage whole-genome-sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21x coverage) and low-coverage whole-genome-sequencing data from 8,760 heterogeneous stock rats (mean 0.27x coverage), we can impute 7.32 million bi-allelic single-nucleotide polymorphisms with a concordance rate >99.76% compared to high-coverage (mean 33.26x coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping-by-sequencing or low-coverage whole-genome-sequencing for accurate genotyping, and demonstrate techniques that may also be useful for other genetic studies in non-human subjects.
RESUMO
Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders and multiple co-occurring psychopathologies. Human and animal genetic studies have established that delay discounting is heritable, but only a few associated genes have been identified. We aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogeneous Stock (HS) rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female HS rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at various delays. Preference switch points were calculated and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter k of both functions were used as delay discounting measures. GWAS for AUC, exponential k, and one indifference point identified significant loci on chromosomes 20 and 14. The gene Slc35f1, which encodes a member of the solute carrier family, was the sole gene within the chromosome 20 locus. That locus also contained an eQTL for Slc35f1, suggesting that heritable differences in the expression might be responsible for the association with behavior. Adgrl3, which encodes a latrophilin subfamily G-protein coupled receptor, was the sole gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.
Assuntos
Desvalorização pelo Atraso , Estudo de Associação Genômica Ampla , Animais , Ratos , Masculino , Feminino , Recompensa , Locos de Características QuantitativasRESUMO
The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1 , a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1 , Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.
RESUMO
Addiction is commonly characterized by escalation of drug intake, compulsive drug seeking, and continued use despite harmful consequences. However, the factors contributing to the transition from moderate drug use to these problematic patterns remain unclear, particularly regarding the role of sex. Many preclinical studies have been limited by small sample sizes, low genetic diversity, and restricted drug access, making it challenging to model significant levels of intoxication or dependence and translate findings to humans. To address these limitations, we characterized addiction-like behaviors in a large sample of >500 outbred heterogeneous stock (HS) rats using an extended cocaine self-administration paradigm (6 hr/daily). We analyzed individual differences in escalation of intake, progressive ratio (PR) responding, continued use despite adverse consequences (contingent foot shocks), and irritability-like behavior during withdrawal. Principal component analysis showed that escalation of intake, progressive ratio responding, and continued use despite adverse consequences loaded onto a single factor that was distinct from irritability-like behaviors. Categorizing rats into resilient, mild, moderate, and severe addiction-like phenotypes showed that females exhibited higher addiction-like behaviors, with a lower proportion of resilient individuals compared to males. These findings suggest that, in genetically diverse rats with extended drug access, escalation of intake, continued use despite adverse consequences, and PR responding are highly correlated measures of a shared underlying construct. Furthermore, our results highlight sex differences in resilience to addiction-like behaviors.
Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Autoadministração , Animais , Ratos , Masculino , Feminino , Cocaína/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Aditivo , Comportamento de Procura de DrogaRESUMO
Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders, as well as multiple co-occurring psychopathologies. Genetic studies in humans and animal models have established that delay discounting is a heritable trait, but only a few specific genes have been associated with delay discounting. Here, we aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogenous Stock rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at variable delays. Preference switch points were calculated for each rat and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter k of both functions were used as delay discounting measures. GWAS for AUC, exponential k, and indifference points for a short delay identified significant loci on chromosomes 20 and 14. The gene Slc35f1, which encodes a member of the solute carrier family of nucleoside sugar transporters, was the only gene within the chromosome 20 locus. That locus also contained an eQTL for Slc35f1, suggesting that heritable differences in the expression of that gene might be responsible for the association with behavior. The gene Adgrl3, which encodes a member of the latrophilin family of G-protein coupled receptors, was the only gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.
RESUMO
Protein-based biomaterials offer several advantages over synthetic materials, owing to their unique stimuli-responsive properties, biocompatibility and modular nature. Here, we demonstrate that E5C, a recombinant protein block polymer, consisting of five repeats of elastin like polypeptide (E) and a coiled-coil domain of cartilage oligomeric matrix protein (C), is capable of forming a porous networked gel at physiological temperature, making it an excellent candidate for injectable biomaterials. Combination of E5C with Atsttrin, a chondroprotective engineered derivative of anti-inflammatory growth factor progranulin, provides a unique biochemical and biomechanical environment to protect against post-traumatic osteoarthritis (PTOA) onset and progression. E5C gel was demonstrated to provide prolonged release of Atsttrin and inhibit chondrocyte catabolism while facilitating anabolic signaling in vitro. We also provide in vivo evidence that prophylactic and therapeutic application of Atsttrin-loaded E5C gels protected against PTOA onset and progression in a rabbit anterior cruciate ligament transection model. Collectively, we have developed a unique protein-based gel capable of minimally invasive, sustained delivery of prospective therapeutics, particularly the progranulin-derivative Atsttrin, for therapeutic application in OA.
Assuntos
Lesões do Ligamento Cruzado Anterior , Cartilagem Articular , Osteoartrite , Animais , Materiais Biocompatíveis/uso terapêutico , Cartilagem Articular/metabolismo , Géis , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Polímeros/uso terapêutico , Progranulinas/metabolismo , Progranulinas/uso terapêutico , CoelhosRESUMO
Pigmented villonodular synovitis (PVNS) is a rare, benign, idiopathic proliferative disorder of the synovium that results in villous and or nodular formations that have been reported to manifest within joints, tendon sheaths, and bursae. The overall incidence includes 2% to 10% that occur within the foot and ankle joints. PVNS has a high rate of recurrence and up to a 45% recurrence rate has been reported despite surgical intervention. Although traditional treatment for PVNS includes synovectomy with arthroplasty of the affected joint, radiation therapy is now suggested as an adjunctive therapy that is believed to reduce recurrence of the disease. We present a case of PVNS where the patient was treated in 2 stages: surgical resection of the tumor with arthroplasty of the ankle joint followed by radiation therapy. A retrospective review of the chart, radiographs, and MRIs was conducted for a 36-year-old, African American female who had been treated and followed for 8 years. Pathologic examination of the tumor confirmed the diagnosis of PVNS. No evidence of recurrent PVNS was identified in the long-term postoperative MRI examination. The fact that ancillary imaging examinations failed to reveal evidence of recurrence and that the patient expresses a very high patient satisfaction supports the potential benefit of adjunctive radiation therapy for this condition.
Assuntos
Articulação do Tornozelo/efeitos da radiação , Sinovite Pigmentada Vilonodular/diagnóstico , Sinovite Pigmentada Vilonodular/radioterapia , Adulto , Articulação do Tornozelo/patologia , Articulação do Tornozelo/cirurgia , Terapia Combinada , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Procedimentos Ortopédicos/métodos , Medição da Dor , Cuidados Pós-Operatórios/métodos , Dosagem Radioterapêutica , Radioterapia Adjuvante , Recuperação de Função Fisiológica , Medição de Risco , Prevenção Secundária , Índice de Gravidade de Doença , Sinovectomia , Membrana Sinovial/efeitos da radiação , Sinovite Pigmentada Vilonodular/cirurgia , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos , Resultado do TratamentoRESUMO
A complete and prompt cardiac arrest using a cold cardioplegic solution is routinely used in heart transplantation to protect the graft function. However, warm ischemic time is still inevitable during the procedure to isolate donor hearts in the clinical setting. Our knowledge of the mechanism changes prevented by cold storage, and how warm ischemia damages donor hearts, is extremely poor. The potential consequences of this inevitable warm ischemic time to grafts, and the underlying potential protective mechanism of prompt graft cooling, have been studied in order to explore an advanced graft protection strategy. To this end, a surgical procedure, including 10-15 min warm ischemic time during procurement, was performed in mouse models to mimic the clinical situation (Group I), and compared to a group of mice that had the procurement performed with prompt cooling procedures (Group II). The myocardial morphologic changes (including ultrastructure) were then assessed by electron and optical microscopy after 6 h of cold preservation. Furthermore, syngeneic heart transplantation was performed after 6 h of cold preservation to measure the graft heart function. An electron microscopy showed extensive damage, including hypercontracted myofibers with contraction bands, and damaged mitochondria that released mitochondrial contents in Group I mice, while similar patterns of damage were not observed in the mice from Group II. The results from both the electron microscopy and immunoblotting verified that cardiac mitophagy (protective mitochondrial autophagy) was present in the mice from Group II, but was absent in the mice from Group I. Moreover, the mice from Group II demonstrated faster rebeating times and higher beating scores, as compared to the mice from Group I. The pressure catheter system results indicated that the graft heart function was significantly more improved in the mice from Group II than in those from Group I, as demonstrated by the left ventricle systolic pressure (31.96 ± 6.54 vs. 26.12 ± 8.87 mmHg), the +dp/dt (815.6 ± 215.4 vs. 693.9 ± 153.8 mmHg/s), and the -dp/dt: (492.4 ± 92.98 vs. 418.5 ± 118.9 mmHg/s). In conclusion, the warm ischemic time during the procedure impaired the graft function and destroyed the activation of mitophagy. Thus, appropriate mitophagy activation has emerged as a promising therapeutic target that may be essential for graft protection and functional improvement during heart transplantation.
Assuntos
Temperatura Baixa , Transplante de Coração , Mitofagia , Animais , Soluções Cardioplégicas/farmacologia , Catéteres , Feminino , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitofagia/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/ultraestrutura , Perfusão , Isquemia QuenteRESUMO
The rat oxycodone and cocaine biobanks contain samples that vary by genotypes (by using genetically diverse genotyped HS rats), phenotypes (by measuring addiction-like behaviors in an advanced SA model), timepoints (samples are collected longitudinally before, during, and after SA, and terminally at three different timepoints in the addiction cycle: intoxication, withdrawal, and abstinence or without exposure to drugs through age-matched naive rats), samples collected (organs, cells, biofluids, feces), preservation (paraformaldehyde-fixed, snap-frozen, or cryopreserved) and application (proteomics, transcriptomics, microbiomics, metabolomics, epigenetics, anatomy, circuitry analysis, biomarker discovery, etc.Substance use disorders (SUDs) are pervasive in our society and have substantial personal and socioeconomical costs. A critical hurdle in identifying biomarkers and novel targets for medication development is the lack of resources for obtaining biological samples with a detailed behavioral characterization of SUD. Moreover, it is nearly impossible to find longitudinal samples. As part of two ongoing large-scale behavioral genetic studies in heterogeneous stock (HS) rats, we have created two preclinical biobanks using well-validated long access (LgA) models of intravenous cocaine and oxycodone self-administration (SA) and comprehensive characterization of addiction-related behaviors. The genetic diversity in HS rats mimics diversity in the human population and includes individuals that are vulnerable or resilient to compulsive-like responding for cocaine or oxycodone. Longitudinal samples are collected throughout the experiment, before exposure to the drug, during intoxication, acute withdrawal, and protracted abstinence, and include naive, age-matched controls. Samples include, but are not limited to, blood plasma, feces and urine, whole brains, brain slices and punches, kidney, liver, spleen, ovary, testis, and adrenal glands. Three preservation methods (fixed in formaldehyde, snap-frozen, or cryopreserved) are used to facilitate diverse downstream applications such as proteomics, metabolomics, transcriptomics, epigenomics, microbiomics, neuroanatomy, biomarker discovery, and other cellular and molecular approaches. To date, >20,000 samples have been collected from over 1000 unique animals and made available free of charge to non-profit institutions through https://www.cocainebiobank.org/ and https://www.oxycodonebiobank.org/.
Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Bancos de Espécimes Biológicos , Oxicodona/uso terapêutico , Ratos , Ratos Sprague-Dawley , AutoadministraçãoRESUMO
BACKGROUND: Online awareness and error behaviour has largely been studied using computer-based tests or prescribed functional tasks in participants with traumatic brain injury (TBI). OBJECTIVES: This study aimed to compare online awareness and error behaviour of two participants with TBI with two matched controls during tasks of meaning and importance to the participants with TBI, using an occupation-based online awareness assessment. METHODS: Participants were two males with TBI (aged 22 and 23) and two controls (aged 23 and 27). The participants with TBI identified personally meaningful occupations and performed each task on two consecutive occasions. Performances were video-recorded and assessed by two occupational therapists to measure the frequency of errors, the percent of errors that were self-corrected, and the types of error behaviours observed. RESULTS: The participants with TBI demonstrated more frequent errors and poorer self-correction of errors compared to controls. Control participants made greater improvements in error frequency and self-correction with practice, and demonstrated a narrower range of error behaviours. CONCLUSIONS: This study builds upon previous research, by utilising an individualised, occupation-based approach to assess error behaviour and online awareness.