RESUMO
In China, iron (Fe) availability is low in most soils but cadmium (Cd) generally exceeds regulatory soil pollution limits. Thus, biofortification of Fe along with mitigation of Cd in edible plant parts is important for human nutrition and health. Carbon dots (CDs) are considered as potential nanomaterials for agricultural applications. Here, Salvia miltiorrhiza-derived CDs are an efficient modulator of Fe, manganese (Mn), zinc (Zn), and Cd accumulation in plants. CDs irrigation (1 mg mL-1 , performed every week starting at the jointing stage for 12 weeks) increased Fe content by 18% but mitigated Cd accumulation by 20% in wheat grains. This finding was associated with the Fe3+ -mobilizing properties of CDs from the soil and root cell wall, as well as endocytosis-dependent internalization in roots. The resulting excess Fe signaling mitigated Cd uptake via inhibiting TaNRAMP5 expression. Foliar spraying of CDs enhanced Fe (44%), Mn (30%), and Zn (19%) content with an unchanged Cd accumulation in wheat grains. This result is attributed to CDs-enhanced light signaling, which triggered shoot-to-root Fe deficiency response. This study not only reveals the molecular mechanism underlying CDs modulation of Fe signaling in plants but also provides useful strategies for concurrent Fe biofortification and Cd mitigation in plant-based foods.
Assuntos
Ferro , Solo , Humanos , Ferro/metabolismo , Cádmio/análise , Cádmio/metabolismo , Biofortificação , Zinco/metabolismo , Raízes de Plantas/metabolismoRESUMO
Triclosan (TCS) is released into the terrestrial environment via the application of sewage sludge and reclaimed water to agricultural land. More attention has been paid to its effect on non-target soil organisms. In the present study, chronic toxic effects of TCS on earthworms at a wide range of concentrations were investigated. The reproduction, DNA damage, and expression levels of heat shock protein (Hsp70) gene of earthworms were studied as toxicity endpoints. The results showed that the reproduction of earthworms were significantly reduced (p < 0.05) after exposure to the concentrations ranges from 50 to 300 mg kg(-1), with a half-maximal effective concentration (EC50) of 142.11 mg kg(-1). DNA damage, detected by the comet assay, was observed and there was a clear significant (R(2) = 0.941) relationship between TCS concentrations and DNA damage, with the EC50 value of 8.85 mg kg(-1). The expression levels of Hsp70 gene of earthworms were found to be up-regulated under the experimental conditions. The expression level of hsp70 gene increased, up to about 2.28 folds that in the control at 50 mg kg(-1). The EC50 value based on the Hsp70 biomarker was 1.79 mg kg(-1). Thus, among the three toxicity endpoints, the Hsp70 gene was more sensitive to TCS in soil.
Assuntos
Proteínas de Choque Térmico/genética , Poluentes do Solo/toxicidade , Triclosan/toxicidade , Animais , Catalase/metabolismo , Ensaio Cometa , Dano ao DNA , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Oligoquetos , Reprodução/efeitos dos fármacos , Superóxido Dismutase/metabolismoRESUMO
Contamination with cadmium (Cd) is a prominent issue in agricultural non-point source pollution in China. With the deposition and activation of numerous Cd metal elements in farmland, the problem of excessive pollution of agricultural produce can no longer be disregarded. Considering the issue of Cd pollution in farmland, this study proposes the utilization of cross-linked modified biochar (prepared from pine wood) and calcium alginate hydrogels to fabricate a composite material which is called MB-CA for short. The aim is to investigate the adsorption and passivation mechanism of soil Cd by this innovative composite. The MB-CA exhibits a higher heavy metal adsorption capacity compared to traditional biochar and hydrogel due to its increased oxygen-containing functional groups and heavy metal adsorption sites. In the Cd solution adsorption experiment, the highest Cd2+ removal rate reached 85.48%. In addition, it was found that the material also has an excellent pH improvement effect. Through the adsorption kinetics experiment and the soil culture experiments, it was determined that MB-CA adheres to the quasi-second-order kinetic model and is capable of adsorbing 35.94% of Cd2+ in soil. This study validates the efficacy of MB-CA in the adsorption and passivation of Cd in soil, offering a novel approach for managing Cd-contaminated cultivated land.
RESUMO
Microplastics (MPs) pose a threat to farmland soil quality and crop safety. MPs exist widely in food legumes farmland soil due to the extensive use of agricultural film and organic fertilizer, but their distribution characteristics and their impact on soil environment have not been reported. The abundance and characteristics of MPs, soil physical and chemical properties, and bacterial community composition were investigated in 76 soil samples from five provinces in northern China. The results showed that the abundance of MPs ranged from 1600 to 36,200 items/kg. MPs in soil were mostly fibrous, less than 0.2 mm, and white. Rayon, polyester and polyethylene were the main types of MPs. The influences of MPs on soil physicochemical properties and bacterial communities mainly depended on the type of MPs. Notably, polyethylene significantly decreased the proportion of silt particles, and increased the nitrate nitrogen content as well as the abundance of MPs-degrading bacteria Paenibacillus (p < 0.05). Moreover, bacteria were more sensitive to polyesters in soil with low concentration of organic matter. This study indicated that MPs in food legumes farmland soil presented a higher-level. And, they partially altered soil physicochemical properties, and soil bacteria especially in soil with low organic matter.
Assuntos
Bactérias , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Solo , China , Poluentes do Solo/análise , Solo/química , Microplásticos/análise , Bactérias/classificação , Fabaceae , Agricultura , FazendasRESUMO
The present study was conducted to investigate the effectiveness of GA(3) and Tween-80 on enhancing the phytoremediation of Cd-B[a]P co-contaminated soils. Results showed that the addition of GA(3) and GA(3)-Tween-80 enhanced Tagetes patula growth by 14%-32% and 23%-55%, respectively, relative to the control group. However, under independent GA(3)-treated soils, Cd and B[a]P concentrations in the shoots of the plants decreased by 15%-33% and 15%-53%, respectively, compared with CK. By contrast, the shoot concentration and accumulation of Cd under GA(3)-Tween-80 treatment increased by 0.01-0.46 and 1.33-1.55 times, respectively, whereas those of B[a]P increased from 0.57 to 0.82, and 1.33 to 1.55 times, respectively, compared with those of the control. Optimal result for Cd phytoextraction was obtained under combined 5 mmol Tween-80 kg(-1) and 1 mmol GA(3) kg(-1) treatment, and the maximum removal rate of B[a]P was obtained after the application of 5 mmol Tween-80 kg(-1) and 5 mmol GA(3) kg(-1).
Assuntos
Benzopirenos/metabolismo , Cádmio/metabolismo , Polissorbatos/farmacologia , Tagetes/efeitos dos fármacos , Tagetes/metabolismo , Biodegradação Ambiental , Estudos de Viabilidade , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Poluentes do Solo/metabolismo , Tensoativos/farmacologia , Tagetes/crescimento & desenvolvimentoRESUMO
Cadmium (Cd) heavy metal pollution has posed serious threats to soil health and the safe production utilization of agricultural products. A pot experiment was conducted to study the effects of biochar (BC) and nitrogen fertilizer with three levels, namely 2.6 g·pot-1 (N1), 3.5 g·pot-1 (N2), 4.4 g·pot-1 (N3) biochar combined with nitrogen fertilizer (BCN1, BCN2, and BCN3), on soil Cd fractions, Cd enrichment, the transport of rice, and soil enzyme activity, as well as the changes in microbial community composition and complex interactions between microorganisms through high-throughput sequencing. The results showed that biochar combined with nitrogen fertilizer led to the transformation of Cd from the exchangeable state to the residue state, and the proportion of the exchangeable state was significantly reduced by 6.2%-14.7%; by contrast, the proportion of the residue state increased by 18.6%-26.4% relative to that in CK. In addition, singular treatments of nitrogen fertilizer enhanced the accumulation capacities of Cd in roots, which increased by 22%-33.5% compared with that in CK. By contrast, the BC and BCN treatments reduced Cd accumulation in roots and the transfer capacity from stems to rice husks and husk to rice. Furthermore, the BCN treatments promoted soil enzyme activities (urease, acid phosphatase, invertase, and catalase). MiSeq sequencing showed that BCN treatments increased the abundance of the main species of soil bacterial microbes (such as Acidobacteriales, Solibacterales, Pedosphaerales, and Nitrospirales). Moreover, co-occurrence network analysis showed that the complexity of the soil bacterial network was enhanced under the N, BC, and BCN treatments. Overall, biochar combined with nitrogen fertilizer reduced soil Cd availability, inhibited the capacity of Cd accumulation and the transport of rice, and improved the soil eco-environmental quality. Thus, using BCN could be a feasible practice for the remediation of Cd-polluted agricultural soil.
Assuntos
Cádmio , Oryza , Fertilizantes , Solo , Acidobacteria , NitrogênioRESUMO
Tillage systems may change the cadmium (Cd) threshold of farmland soil. However, there have been few studies on this topic. Therefore, this study aimed to explore the influence of tillage systems on Cd threshold. The study conducted 2-year field experiments under different tillage systems (early rice-fallow, early rice-late rice and early rice-vegetable) at three typical Cd-polluted sites in China. The species sensitivity distribution (SSD) method was used to construct the SSD curves for the calculation of the Cd threshold by analyzing the experimental data. The sensitivity analysis results based on the SSD curves revealed that the sensitivities to Cd in rice varieties under the same tillage system were substantially different but almost the same under different tillage systems. These results can help select rice varieties with low Cd sensitivity for crop safety. Different tillage systems at the same site varied in their influence on Cd threshold values. Cd threshold values under early rice-late rice (e.g., 0.27, 0.28 mg/kg in Xiangtan City) and early rice-vegetable (e.g., 0.26, 0.31 mg/kg in Xiangtan City) tillage systems were roughly lower than that under the early rice-fallow tillage system (e.g., 0.33, 0.35 mg/kg in Xiangtan City). Notably, the influence of tillage systems resulted in Cd threshold values being generally lower than the Cd risk screening values of the current Chinese soil environmental quality standard. Analysis of the influence of different tillage systems on the Cd threshold is beneficial for the optimization of farmland soil environmental quality standards.
Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo , Fazendas , Poluentes do Solo/análise , China , VerdurasRESUMO
Excessive dietary intake of cadmium (Cd) poses toxicity risks to human health, and it is therefore essential to establish accurate and regionally appropriate soil Cd thresholds that ensure the safety of agricultural products grown in different areas. This study investigated the differences in the Cd accumulation in 32 vegetable varieties and found that the Cd content ranged from 0.01 to 0.24 mg·kg-1, and decreased in the order of stem and bulb vegetables > leafy vegetables > solanaceous crops > bean cultivars. A correlation analysis and structural equation model showed that pH, soil organic matter, and the cation exchange capacity had significant effects on Cd accumulation in the vegetables and explained 72.1 % of the variance. In addition, species sensitivity distribution (SSD) curves showed that stem and bulb vegetables were more sensitive to Cd than other types of vegetables. Using the Burr Type III function for curve fitting, we derived Cd thresholds of 6.66, 4.15, and 1.57 mg·kg-1 for vegetable soils. These thresholds will ensure that 20 %, 50 %, and 95 % of these vegetable varieties were risk-free, respectively. The predicted threshold of soil Cd was more than twice that of China's current National Soil Quality Standard (GB 15618-2018) for Cd values. Therefore, soil scenarios and cultivars should be considered comprehensively when determining farmland soil thresholds. The present results provide a new model for setting soil Cd criteria in high geological background areas.
Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/análise , Verduras/química , Solo/química , Fazendas , Poluentes do Solo/análise , ChinaRESUMO
Triclosan (TCS) is a broad-spectrum bactericide that is used for a variety of antimicrobial functions. TCS is frequently detected in the terrestrial environment due to application of sewage sludge to agricultural land. In the present study, 48-h paper contact and 28-day spiked soil tests were conducted to examine the toxic effects of TCS on the antioxidative and genetic indices of earthworms (Eisenia fetida). The activity of antioxidative enzymes (superoxide dismutase, SOD; catalase, CAT) and the content of the lipid peroxidation product (malondialdehyde, MDA) were determined as biomarkers of oxidative stress in E. fetida. Moreover, single cell gel electrophoresis (SCGE) was used as a biomarker of genotoxicity. The results showed that triclosan induced a significant increase (P < 0.05) in antioxidative enzyme activities and MDA content. Of all of the biomarkers examined, CAT activity was most sensitive to TCS, and the CAT activity increased significantly (P < 0.05) at bactericidal concentrations of 7.86 ng cm⻲ in the contact test and 10 mg kg⻹ in the spiked soil test. The comet assay showed that TCS treatments significantly induced (P < 0.05) DNA damage in E. fetida, and that 78.6 ng cm⻲ caused significant genotoxic effects in the acute test (48 h). Clear dose-dependent DNA damage to E. fetida was observed both in contact and spiked soil tests. These results imply that TCS may have potential biochemical and genetic toxicity toward earthworms (E. fetida). A battery of biomarkers covering multiple molecular targets of acute toxicity can be combined to better understand the impacts of TCS on E. fetida.
Assuntos
Anti-Infecciosos Locais/farmacologia , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/farmacologia , Triclosan/farmacologia , Animais , Catalase/metabolismo , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/análise , Oligoquetos/enzimologia , Oligoquetos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismoRESUMO
The effects of immobilization remediation of Cd-contaminated soils using sepiolite on soil pH, enzyme activities and microbial communities, TCLP-Cd (toxicity characteristic leaching procedure-Cd) concentration, and spinach (Spinacia oleracea) growth and Cd uptake and accumulation were investigated. Results showed that the addition of sepiolite could increase soil pH, while the TCLP-Cd concentration in soil was decreased with increasing sepiolite. The changes of soil enzyme activities and bacteria number indicated that a certain metabolic recovery occurred after the sepiolite treatments, and spinach shoot biomass increased by 58.5%-65.5% in comparison with the control group when the concentration of sepiolite was < or = 10 g/kg. However, the Cd concentrations in the shoots and roots of spinach decreased with an increase in the rate of sepiolite, experiencing 38.4%-59.1% and 12.6%-43.6% reduction, respectively, in contrast to the control. The results indicated that sepiolite has the potential for success on a field scale in reducing Cd entry into the food chain.
Assuntos
Irrigação Agrícola , Cádmio/química , Recuperação e Remediação Ambiental/métodos , Silicatos de Magnésio/química , Poluentes do Solo/química , Concentração de Íons de Hidrogênio , Spinacia oleracea/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodosRESUMO
Cadmium (Cd) contamination in soil has posed a great threat to crop safety and yield as well as soil quality. Biochar blended with nitrogen fertilizer have been reported to be effective in remediating Cd-contaminated soil. However, the influence of co-application of biochar and nitrogen fertilizer on the Cd bioavailability, rice yield and soil microbiome remains unclear. In this study, eight different treatments including control (CK), 5% biochar (B), 2.6, 3.5, 4.4 g/pot nitrogen fertilizers (N1, N2 and N3), and co-application of biochar and nitrogen fertilizers (BN1, BN2, BN3) were performed in a pot experiment with paddy soil for observations in an entire rice cycle growth period. Results showed single N increased soil available Cd content and Cd uptake in edible part of rice, while the soil available Cd content significantly decreased by 14.8% and 7.4%-11.1% under the B, BN treatments, and the Cd content in edible part of rice was significantly reduced by 35.1% and 18.5%-26.5%, respectively. Besides, B, N and BN treatments significantly increased the yield of rice by 14.3%-86.6% compared with CK, and the highest yield was gained under BN3 treatment. Soil bacterial diversity indices (Shannon, Chao1, observed species and PD whole tree index) under N2, N3 were generally improved. Cluster analysis indicated that bacterial community structures under BN treatments differed from those of CK and single N treatments. BN treatments enhanced the abundances of key bacterial phylum such as Acidobacteria, positively associated with yield, and increased the abundance of Spirochaetes, negatively correlated to soil available Cd and Cd uptake of rice. Furthermore, the regression path analysis (RPA) revealed that pH, organic matter (OM), alkaline hydrolysis of nitrogen (AHN) and available Cd were the major properties influencing Cd content in edible part of rice. Redundancy analysis (RDA) revealed that pH and available Cd played key role in shaping soil bacterial community. Thus, BN is a feasible practice for the improvements of rice growth and remediation of Cd-polluted soil.
Assuntos
Oryza , Poluentes do Solo , Bactérias , Cádmio/análise , Carvão Vegetal , Fertilizantes/análise , Nitrogênio , Oryza/química , Rizosfera , Solo/química , Poluentes do Solo/análiseRESUMO
The study of threshold levels of heavy metals in soil is essential for the assessment and management of soil environmental quality. This study reviewed the influencing factors, the derivation, and application aspects of heavy metals' threshold values comprehensively by a combination of bibliometric analysis and scientific knowledge mapping. A total of 1106 related studies were comprehensively extracted from the Web of Science database during the period from 2001 to 2020. The results showed that the publication output has been growing strongly. An analysis on the subject, journal, country, and institution was carried out to demonstrate the development and evolution of this research branch during the two decades. According to high-frequency keywords analysis, external factors (e.g., soil physicochemical properties) and internal factors (e.g., crop genotype) can affect heavy metal threshold values in the soil-crop system. The current methods mainly include the Point model (e.g., evaluation factor method), the Probability model (e.g., species sensitivity distribution method), and the Empirical model (e.g., ecological environment effect method). A threshold study can be applicable to the risk assessment for soil heavy metal contamination in order to determinate the soil pollution degree and its spatial and temporal distribution characteristics. Moreover, challenges and prospects of the study of heavy metal threshold values are proposed, indicating that research should focus on the relationships between human health risks and the established threshold values of heavy metals in the soil, long-term field trials and bioavailability of heavy metals for the derivation of the thresholds, and the establishment of more scientific and rational soil environmental benchmarks.
Assuntos
Metais Pesados , Poluentes do Solo , Bibliometria , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo/química , Poluentes do Solo/análiseRESUMO
Rice (Oryza sativa L.), a staple for half of the world's population, usually accumulates high levels of cadmium (Cd) in the grain when planted in the Cd-contaminated paddy fields. Genetic improvements using natural variation of grain-Cd accumulation is the most cost-effective way to mitigate the risk of excess Cd accumulation. However, as a complex trait, grain-Cd accumulation is susceptible to environmental variation, which challenges to characterize the genetic nature and subsequently the stable performance of grain-Cd accumulation. To boost the genetic effect on grain-Cd performance, we established an approach of normalization using the comparative grain-Cd value (CCd) following a contrasting field design. Identification of the genetic locus responsible for CCd variation help us develop a low-grain-Cd variety de novo, named 'Lushansimiao', which had lower grain-Cd levels in a large-scale field test and can produce Cd-safe rice following prolonged irrigations in the field with intermediate levels of Cd pollution. Combined CCd evaluating and low-Cd allelic genotyping, another six varieties were also identified as low-grain-Cd rice. Our study paves the way to efficiently quantify the genetic nature of grain-Cd accumulation in rice, and the stable low-Cd rice varieties will help to mitigate the risk of excess Cd accumulation in rice.
Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Grão Comestível/química , Genótipo , Oryza/genética , Solo , Poluentes do Solo/análiseRESUMO
The study presented the successful microwave-assisted (MW-assisted) preparation of a novel adsorbent derived from rice straw (RSMW-AC) and explored its adsorption performance toward heavy metal ions from water. The RSMW-AC was rapidly synthesized through pretreatment and one step grafting via the MW-assisted approach. The quantitative predictive correlations between target performance of RSMW-AC and process parameters were obtained through the response surface methodology (RSM). Meanwhile, the optimal preparation process conditions were determined: NaOH solution concentration, 20%; MW irradiation temperature for pretreatment, 100 and 150 °C; MW irradiation time for pretreatment and grafting, 10 and 60 min; EDTAD-RS mass ratio, 3. The RSMW-AC showed a good adsorption of different heavy metal ions from water (152.39, 55.46, 52.91, 35.60 and 20.11 mg g-1 for Pb(â ¡), Mn(â ¡), Cd(â ¡), Cu(â ¡) and Ni(â ¡), respectively). The adsorption behaviors followed the Langmuir model and pseudo second-order kinetics model with a highly significant correlation. Also of note was that amino and carboxyl groups were successfully introduced on the rice straw based on characterization results. Furthermore, preparation mechanism was explored to reveal reasons why microwave irradiation could accelerate the preparation of the adsorbent; its adsorption process was dominated by electrostatic attraction and chelation. Finally, the study made the industrial application feasibility analysis of MW-assisted approach used for pretreatment and graft reaction of agro-waste biomass.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Celulose , Estudos de Viabilidade , Cinética , Micro-Ondas , Poluentes Químicos da Água/análiseRESUMO
Superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and the comet assay (SCGE) were used as biomarkers to evaluate the oxidative stress and genotoxicity of toluene, ethylbenzene and xylene in earthworms (Eisenia fetida). The results indicated that the exposure of the three pollutants caused a stress response of the three enzymes, an approximate bell-shaped change (a tendency of inducement firstly and then inhibition with increasing concentrations of the pollutants) was mostly found. The three enzymes tested differed in their sensitivity to different pollutants. While the activity of POD was not significantly changed within the concentration range, the concentration thresholds for significant (P < 0.05) responses to toluene based on SOD and CAT were 5 mg kg(-1), respectively. Similarly, the concentration thresholds for significant (P < 0.05) responses to ethylbenzene based on CAT and POD were 10 and 5 mg kg(-1), respectively, while the activity of SOD was not significantly changed within the concentration range. Significant responses to xylene based on CAT and POD were 5 mg kg(-1), respectively, while the activity of SOD was significantly (P < 0.05) induced at 10 mg kg(-1). The SCGE assay results showed that these three pollutants could significantly (P < 0.01) induce DNA damage in earthworms and the clear dose-dependent relationships were displayed, indicating potential genotoxic effects of toluene, ethylbenzene, and xylene on E. fetida. The inducement of DNA damage may be attributed to the oxidative attack of toluene, ethylbenzene, and xylene. Toluene seemed to be more genotoxic as it could induce the higher extent of DNA damage than ethylbenzene and xylene. The results suggest that the SCGE assay of earthworms is simple and efficient for diagnosing the genotoxicity of pollutants in terrestrial environment.
Assuntos
Derivados de Benzeno/toxicidade , Poluentes do Solo/toxicidade , Tolueno/toxicidade , Xilenos/toxicidade , Animais , Derivados de Benzeno/administração & dosagem , Catalase/efeitos dos fármacos , Catalase/metabolismo , Ensaio Cometa/métodos , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Monitoramento Ambiental/métodos , Oligoquetos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/efeitos dos fármacos , Peroxidase/metabolismo , Poluentes do Solo/administração & dosagem , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Tolueno/administração & dosagem , Xilenos/administração & dosagemRESUMO
Classifying the quality of agricultural products is an important means of managing the arable land quality and guaranteeing the quality and safety of agricultural products. This work is planned to be completed in 2020. However, there is still no perfect method or technology for classifying the quality of arable lands. The species sensitivity distribution (SSD) has become commonly used for determining ecological safety thresholds since it takes into account differences in species sensitivity, the physical and chemical properties of soils, biological availability, and sources of pollutants. However, it has not yet been applied to the classification of arable land quality. Therefore, based on the routine monitoring data of rice production areas in southern China from the Agro-environmental Monitoring Center of China, this study proposes the use of species sensitivity distributions to classify the environmental quality of cadmium in rice production areas. The scientific rationale of this method was also discussed in order to provide an important reference for the construction and improvement of the classification system for arable land quality in China. The results showed that the pH, soil organic matter, and cation exchange capacity of the physical and chemical properties of soils significantly affected the enrichment of cadmium in rice, and this relationship was used to establish the cadmium transfer equation in the soil-rice system. It was found that there were obvious differences in the cadmium enrichment abilities of different rice varieties, which were mainly caused by the differences in their genotypes. According to the species sensitivity distributions, soil cadmium thresholds were obtained, which yielded a priority protection class of less than 0.26 mg·kg-1 and strict control class of greater than 1.67 mg·kg-1, between which are the safe use classes. The results were verified through independent datasets, and it was found that the application of species sensitivity distributions to classify the environmental quality of cadmium in rice producing areas reflected good scientific rationale and operability. This study may provide a foundation for the construction and improvement of the arable land quality classification system in China.
RESUMO
In order to simultaneously improve the remediation capability of Cd contaminated water and soil, hydroxy iron-ABsep (HyFe/ABsep) was synthesized by a two-step modified (acid-base composite treatment, and hydroxy group was by using NaOH and Fe (NO3)3·9H2O). Results showed that HyFe/ABsep had developed pores and a rougher surface morphology, and the salt-soluble ion content was increased, surface-loaded iron species was mainly composed of FeOOH. Adsorption process of Cd2+ by HyFe/ABsep conformed best to the preudo-second-order model and Redlich-Paterson models, respectively. The behavior over a whole range of adsorption was consistent with chemical adsorption being the rate-controlling step and the theoretical maximum adsorption capacity obtained for the HyFe/ABsep was 220.9 mg·g-1 at 298 K, which was 4.87 times than Sep. HyFe/ABsep also had a more excellent passivation effect on available Cd in soil, being 36.83%-48.46% under the treatments of 0.5%-4% HyFe/ABsep, The structure and morphology of HyFe/ABsep were characterized through SEM-EDS, TEM, FTIR, XRD and XPS indicated that the mainly mechanisms of Cd sorption may include precipitates, ion exchange and complexation of active silanol groups. Therefore, HyFe/ABsep can employ as an effective agent for immobilization remediation of Cd contaminated water and soil.
RESUMO
The effects of chemical amendments including zeolite, compost and mesoporous molecular sieves (MCM-41) on the extractability and speciation of heavy metals (Cd, Pb and Cu) in a contaminated soil were investigated. Results showed that the application of soil amendments decreased Cd, Pb and Cu uptake by the shoots of pakchoi, up to 44.2-53.2%, 30.2-42.7% and 16.9-22.1%, respectively, compared with the control. Among the three amendments, zeolite and MCM-41 were more efficient in reducing Cd and Cu uptake, while compost was more efficient in reducing Pb uptake by the plants. The growth of pakchoi was improved in amended soils due to the action of chemical amendments.
Assuntos
Cádmio/análise , Cobre/análise , Chumbo/análise , Poluentes do Solo/análise , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Cádmio/isolamento & purificação , Cádmio/metabolismo , Cobre/isolamento & purificação , Cobre/metabolismo , Chumbo/isolamento & purificação , Chumbo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Dióxido de Silício , Solo/análise , Poluentes do Solo/isolamento & purificação , Poluentes do Solo/metabolismo , ZeolitasRESUMO
A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg kg(-1), the available Cd in the soil after the application of 1-10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg kg(-1), the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg kg(-1) fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg kg(-1)), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.
Assuntos
Cádmio/metabolismo , Recuperação e Remediação Ambiental/métodos , Silicatos de Magnésio/farmacologia , Poluentes do Solo/metabolismo , Spinacia oleracea/efeitos dos fármacos , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Solo/química , Microbiologia do Solo , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismoRESUMO
Biomass-based materials such as biochar have a good performance in heavy metal adsorption. The adsorption of Cd2+ on biochar converted from cotton straw was studied. Adsorption isotherm, kinetics and effect factors such as temperature, pH and ionic strength were investigated. The adsorption of Cd2+ on biochar can be fitted by the Freundlich isotherm better than the Langmuir isotherm. The maximum adsorption amounts of Cd2+ at different temperatures were 9.738 mg x g(-1) (288.15 K), 10.14 mg x g(-1) (298.15 K), 10.40 mg x g(-1) (308.15 K) and 10.71 mg x g(-1) (318.15 K), respectively. The free energies AG(theta) were from -8.346 kJ x mol(-1) to -10.276 kJ x mol(-1) at different temperatures, indicating that the adsorption of Cd2+ onto biochar is spontaneous and is an endothermic process. The adsorption process can reach equilibrium within 40 minutes and can be fitted by the pseudo second order kinetic model. pH showed a significant effect on the adsorption of Cd2+ on biochar in the range of 2-8. The adsorption amount of Cd2+ on biochar shows a reducing trend with the increasing ionic strength.