Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404075

RESUMO

Ir-Ni alloys supported on SiO2 have been reported to show high catalytic activity for styrene hydrogenation; however, precise control of compositions and sizes of the Ir-Ni alloys is difficult when conventional metal salts are used as precursors. Furthermore, the concomitant formation of unalloyed Ni nanoparticles disturbs quantitative discussion about Ir-Ni alloy compositions. We report herein a preparation method of Ir-Ni alloys with precisely controlled compositions on SiO2 using Ni(NO3)2 and an Ir complex possessing CN- ligands, [Ir(CN)6]3- or [Ir(ppy)2(CN)2]- (ppy = 2-phenylpyridine), as precursors. The in situ formation of cyano-bridged coordination polymers involving Ir and Ni promotes the formation of Ir-Ni alloys, whose compositions are virtually the same as expected from the amounts of Ir and Ni used for the preparation, after heat treatment under H2. The use of [Ir(ppy)2(CN)2]- as the precursor resulted in the formation of smaller Ir-Ni alloy particles than those with [Ir(CN)6]3- related to the structures of the formed coordination polymers.

2.
J Hazard Mater ; 396: 122730, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32344365

RESUMO

Plasma-catalytic oxidation of particulate matter (PM) has potential applications for diesel exhaust cleaning. There is a grand requirement to explore the mechanism of carbonaceous PM oxidation for the development of plasma catalysts. Herein, Au/γ-Al2O3 was used to catalyze the gasification of the graphitic carbon. A modified diffuse reflectance infrared Fourier transform spectrometer equipped with a mass spectrometer was originally utilized to in situ characterize the surface intermediates of graphite on Au/γ-Al2O3 and the gaseous products during the discharges processes in the O2-He balanced gases. It was found that O atoms and O3 play important roles in the formation of surface oxygen complexes (SOCs) and facilitate the gasification of SOCs to CO2 in the presence of Au/γ-Al2O3. The findings are helpful to understand the plasma-catalytic oxidation mechanism of PM and further develop efficient plasma catalysts.

3.
J Hazard Mater ; 363: 10-15, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30300773

RESUMO

Carbon oxidation has two stages, the first is the formation of surface oxides and the second is the gasification of the surface oxides to CO2. Calcium carbonate (CaCO3) was used to catalyze the gasification of the surface oxides. The catalytic effect of on graphite oxidation and its catalytic mechanism were studied by using thermogravimetric technique and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). It was found that characteristic temperature (T50) of graphite oxidation with CaCO3 was 946 K, 113 K lower than that of graphite only. DRIFTS analysis results show that surface oxides (adsorbed CO2 and carbonate CO32-) were formed on the graphite surface at a temperature above 473 K, carbonate products on graphite surface disappeared when CaCO3 was present; formation of CO32- on CaCO3 surface was confirmed, this CO32- may be more easily gasified into gaseous CO2. The kinetic analysis results showed that CaCO3 promoted graphite oxidation has an activation energy of 74.3 kJ mol-1, far lower than that of graphite (148 kJ mol-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA