Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 51(4): 559-63, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21458460

RESUMO

Tetrahydrobiopterin (BH(4)) is an essential cofactor for aromatic amino acid hydroxylases and for all three nitric oxide synthase (NOS) isoforms. It also has a protective role in the cell as an antioxidant and scavenger of reactive nitrogen and oxygen species. Experimental studies in humans and animals demonstrate that decreased BH(4)-bioavailability, with subsequent uncoupling of endothelial NOS (eNOS) plays an important role in the pathogenesis of endothelial dysfunction, hypertension, ischemia-reperfusion injury, and pathologic cardiac remodeling. Synthetic BH(4) is clinically approved for the treatment of phenylketonuria, and experimental studies support its capacity for ameliorating cardiovascular pathophysiologies. To date, however, the translation of these studies to human patients remains limited, and early results have been mixed. In this review, we discuss the pathophysiologic role of decreased BH(4) bioavailability, molecular mechanisms regulating its metabolism, and its potential therapeutic use as well as pitfalls as an NOS-modulating drug. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''


Assuntos
Antioxidantes/uso terapêutico , Biopterinas/análogos & derivados , Endotélio Vascular/fisiopatologia , Coração/fisiopatologia , Animais , Biopterinas/biossíntese , Biopterinas/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Coração/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Terapia de Alvo Molecular , Miocárdio/enzimologia , Óxido Nítrico Sintase/metabolismo
2.
J Biol Chem ; 285(17): 13032-44, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20147292

RESUMO

The crystal structure of the human A(2A) adenosine receptor bound to the A(2A) receptor-specific antagonist, ZM241385, was recently determined at 2.6-A resolution. Surprisingly, the antagonist binds in an extended conformation, perpendicular to the plane of the membrane, and indicates a number of interactions unidentified before in ZM241385 recognition. To further understand the selectivity of ZM241385 for the human A(2A) adenosine receptor, we examined the effect of mutating amino acid residues within the binding cavity likely to have key interactions and that have not been previously examined. Mutation of Phe-168 to Ala abolishes both agonist and antagonist binding as well as receptor activity, whereas mutation of this residue to Trp or Tyr had only moderate effects. The Met-177 --> Ala mutation impeded antagonist but not agonist binding. Finally, the Leu-249 --> Ala mutant showed neither agonist nor antagonist binding affinity. From our results and previously published mutagenesis data, we conclude that conserved residues Phe-168(5.29), Glu-169(5.30), Asn-253(6.55), and Leu-249(6.51) play a central role in coordinating the bicyclic core present in both agonists and antagonists. By combining the analysis of the mutagenesis data with a comparison of the sequences of different adenosine receptor subtypes from different species, we predict that the interactions that determine subtype selectivity reside in the more divergent "upper" region of the binding cavity while the "lower" part of the binding cavity is conserved across adenosine receptor subtypes.


Assuntos
Modelos Moleculares , Receptor A2A de Adenosina/química , Triazinas/química , Triazóis/química , Antagonistas do Receptor A2 de Adenosina , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular , Humanos , Ligantes , Mutagênese , Mutação de Sentido Incorreto , Ligação Proteica , Receptor A2A de Adenosina/metabolismo , Triazinas/metabolismo , Triazóis/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 299(5): H1283-99, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833966

RESUMO

Lung ischemia-reperfusion injury remains one of the major complications after cardiac bypass surgery and lung transplantation. Due to its dual blood supply system and the availability of oxygen from alveolar ventilation, the pathogenetic mechanisms of ischemia-reperfusion injury in the lungs are more complicated than in other organs, where loss of blood flow automatically leads to hypoxia. In this review, an extensive overview is given of the molecular and cellular mechanisms that are involved in the pathogenesis of lung ischemia-reperfusion injury and the possible therapeutic strategies to reduce or prevent it. In addition, the roles of neutrophils, alveolar macrophages, cytokines, and chemokines, as well as the alterations in the cell-death related pathways, are described in detail.


Assuntos
Pneumopatias/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Ponte Cardiopulmonar/efeitos adversos , Humanos , Pneumopatias/prevenção & controle , Pneumopatias/terapia , Transplante de Pulmão/efeitos adversos , Modelos Animais , Fluxo Sanguíneo Regional , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/terapia
5.
Free Radic Biol Med ; 50(7): 765-76, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21172428

RESUMO

The homodimeric flavohemeprotein endothelial nitric oxide synthase (eNOS) oxidizes l-arginine to l-citrulline and nitric oxide (NO), which acutely vasodilates blood vessels and inhibits platelet aggregation. Chronically, eNOS has a major role in the regulation of blood pressure and prevention of atherosclerosis by decreasing leukocyte adhesion and smooth muscle proliferation. However, a disturbed vascular redox balance results in eNOS damage and uncoupling of oxygen activation from l-arginine conversion. Uncoupled eNOS monomerizes and generates reactive oxygen species (ROS) rather than NO. Indeed, eNOS uncoupling has been suggested as one of the main pathomechanisms in a broad range of cardiovascular and pulmonary disorders such as atherosclerosis, ventricular remodeling, and pulmonary hypertension. Therefore, modulating uncoupled eNOS, in particular eNOS-dependent ROS generation, is an attractive therapeutic approach to preventing and/or treating cardiopulmonary disorders, including protective effects during cardiothoracic surgery. This review provides a comprehensive overview of the pathogenetic role of uncoupled eNOS in both cardiovascular and pulmonary disorders. In addition, the related therapeutic possibilities such as supplementation with the eNOS substrate l-arginine, volatile NO, and direct NO donors as well as eNOS modulators such as the eNOS cofactor tetrahydrobiopterin and folic acid are discussed in detail.


Assuntos
Arginina/metabolismo , Óxido Nítrico Sintase Tipo III , Óxido Nítrico/metabolismo , Arginina/farmacologia , Arginina/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Biopterinas/análogos & derivados , Biopterinas/farmacologia , Biopterinas/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Adesão Celular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Ácido Fólico/farmacologia , Ácido Fólico/uso terapêutico , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA