RESUMO
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which is a highly heterogeneous process. Here we report the cell fate continuum during somatic cell reprogramming at single-cell resolution. We first develop SOT to analyze cell fate continuum from Oct4/Sox2/Klf4- or OSK-mediated reprogramming and show that cells bifurcate into two categories, reprogramming potential (RP) or non-reprogramming (NR). We further show that Klf4 contributes to Cd34+/Fxyd5+/Psca+ keratinocyte-like NR fate and that IFN-γ impedes the final transition to chimera-competent pluripotency along the RP cells. We analyze more than 150,000 single cells from both OSK and chemical reprograming and identify additional NR/RP bifurcation points. Our work reveals a generic bifurcation model for cell fate decisions during somatic cell reprogramming that may be applicable to other systems and inspire further improvements for reprogramming.
Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Técnicas de Reprogramação Celular , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Análise de Sequência de RNA , Análise de Célula Única , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/metabolismo , Fenótipo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Esophageal cancer (EC) is a global canker notorious for causing high mortality due to its relentless incidence rate, convoluted with unyielding recurrence and metastasis. However, these intricacies of EC are associated with an immoderate expression of NY-ESO-1 antigen, presenting a lifeline for adoptive T cell therapy. We hypothesized that naturally isolated higher-affinity T cell receptors (TCRs) that bind to NY-ESO-1 would allow T lymphocytes to target EC with a pronounced antitumor response efficacy. Also, targeting TRPV2, which is associated with tumorigenesis in EC, creates an avenue for dual-targeted therapy. We exploited the dual-targeting antitumor efficacy against EC. METHODS: We isolated antigen-specific TCRs (asTCRs) from a naive library constructed with TCRs obtained from enriched cytotoxic T lymphocytes. The robustness of our asTCRs and their TCR-T cell derivatives, Tranilast (TRPV2 inhibitor), and their bivalent treatment were evaluated with prospective cross-reactive human-peptide variants and tumor cells. RESULTS: Our study demonstrated that our naive unenhanced asTCRs and their TCR-Ts perpetuated their cognate HLA-A*02:01/NY-ESO-1(157-165) specificity, killing varying EC cells with higher cytotoxicity compared to the known affinity-enhanced TCR (TCRe) and its wild-type (TCR0) which targets the same NY-ESO-1 antigen. Furthermore, the TCR-Ts and Tranilast bivalent treatment showed superior EC killing compared to any of their monovalent treatments of either TCR-T or Tranilast. CONCLUSION: Our findings suggest that dual-targeted immunotherapy may have a superior antitumor effect. Our study presents a technique to evolve novel, robust, timely therapeutic strategies and interventions for EC and other malignancies.
RESUMO
KEY MESSAGE: A critical gene for leaf prickle development (LPD) in eggplant was mapped on chromosome E06 and was confirmed to be SmARF10B through RNA interference using a new genetic transformation technique called SACI developed in this study Prickles on eggplant pose challenges for agriculture and are undesirable in cultivated varieties. This study aimed to uncover the genetic mechanisms behind prickle formation in eggplant. Using the F2 and F2:3 populations derived from a cross between the prickly wild eggplant, YQ, and the prickle-free cultivated variety, YZQ, we identified a key genetic locus (LPD, leaf prickle development) on chromosome E06 associated with leaf prickle development through BSA-seq and QTL mapping. An auxin response factor gene, SmARF10B, was predicted as the candidate gene as it exhibited high expression in YQ's mature leaves, while being significantly low in YZQ. Downregulating SmARF10B in YQ through RNAi using a simple and efficient Agrobacterium-mediated genetic transformation method named Seedling Apical Cut Infection (SACI) developed in this study substantially reduced the size and density of leaf prickles, confirming the role of this gene in prickle development. Besides, an effective SNP was identified in SmARF10B, resulting in an amino acid change between YQ and YZQ. However, this SNP did not consistently correlate with prickle formation in eight other eggplant materials examined. This study sheds light on the pivotal role of SmARF10B in eggplant prickle development and introduces a new genetic transformation method for eggplant, paving the way for future research in this field.
Assuntos
Mapeamento Cromossômico , Folhas de Planta , Locos de Características Quantitativas , Solanum melongena , Solanum melongena/genética , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/microbiologia , Mapeamento Cromossômico/métodos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Clonagem Molecular , Genes de Plantas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Interferência de RNARESUMO
Establishing saturated mutagenesis in a specific gene through gene editing is an efficient approach for identifying the relationships between mutations and the corresponding phenotypes. CRISPR/Cas9-based sgRNA library screening often creates indel mutations with multiple nucleotides. Single base editors and dual deaminase-mediated base editors can achieve only one and two types of base substitutions, respectively. A new glycosylase base editor (CGBE) system, in which the uracil glycosylase inhibitor (UGI) is replaced with uracil-DNA glycosylase (UNG), was recently reported to efficiently induce multiple base conversions, including C-to-G, C-to-T and C-to-A. In this study, we fused a CGBE with ABE to develop a new type of dual deaminase-mediated base editing system, the AGBE system, that can simultaneously introduce 4 types of base conversions (C-to-G, C-to-T, C-to-A and A-to-G) as well as indels with a single sgRNA in mammalian cells. AGBEs can be used to establish saturated mutant populations for verification of the functions and consequences of multiple gene mutation patterns, including single-nucleotide variants (SNVs) and indels, through high-throughput screening.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Mutação INDEL , Mamíferos/genética , Mutação , Uracila-DNA Glicosidase/genéticaRESUMO
AIM(S): To investigate the factorial structure, test-retest reliability, and internal consistency of the Older Volunteer Competency Scale and establish its psychometric properties. DESIGN: Cross-sectional survey. METHODS: A total of 1,000 older volunteers were recruited through random sampling and asked to complete the Older Volunteer Competency Scale. Subsequently, 100 participants were selected to participate in a second test to determine the scale's test-retest reliability. Factorial structure was assessed through exploratory factor analysis and confirmatory factor analysis, and internal consistency was assessed using Cronbach's α. RESULTS: Favorable exploratory and confirmatory factor analysis results were obtained. In addition, the three dimensions of the Older Volunteer Competency Scale, namely service awareness, service skills, and interpersonal interaction, had high internal consistency and test-retest reliability. CONCLUSION: The Older Volunteer Competency Scale is an effective and reliable research instrument for evaluating competency and needs among older volunteers.
Assuntos
Projetos de Pesquisa , Humanos , Inquéritos e Questionários , Estudos Transversais , Psicometria/métodos , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Jute is considered one of the most important crops for fiber production and multipurpose usages. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a crucial enzyme involved in lignin biosynthesis in plants. The potential functions of CCoAOMT in lignin biosynthesis of jute have been reported in several studies. However, little is known about the evolution of the CCoAOMT gene family, and either their expression level at different developing stages in different jute cultivars, as well as under abiotic stresses including salt and drought stress. RESULTS: In the present study, 66 CCoAOMT genes from 12 species including 12 and eight CCoAOMTs in Corchorus olitorius and C. capsularis were identified. Phylogenetic analysis revealed that CCoAOMTs could be divided into six groups, and gene expansion was observed in C. olitorius. Furthermore, gene expression analysis of developing jute fibers was conducted at different developmental stages (15, 30, 45, 60, and 90 days after sowing [DAS]) in six varieties (Jute-179 [J179], Lubinyuanguo [LB], and Qiongyueqing [QY] for C. capsularis; Funong No.5 [F5], Kuanyechangguo [KY], and Cvlv [CL] for C. olitorius). The results showed that CCoAOMT1 and CCoAOMT2 were the dominant genes in the CCoAOMT family. Of these two dominant CCoAOMTs, CCoAOMT2 showed a constitutive expression level during the entire growth stages, while CCoAOMT1 exhibited differential expression patterns. These two genes showed higher expression levels in C. olitorius than in C. capsularis. The correlation between lignin content and CCoAOMT gene expression levels indicated that this gene family influences the lignin content of jute. Using real-time quantitative reverse transcription PCR (qRT-PCR), a substantial up-regulation of CCoAOMTs was detected in stem tissues of jute 24 h after drought treatment, with an up to 17-fold increase in expression compared to that of untreated plants. CONCLUSIONS: This study provides a basis for comprehensive genomic studies of the entire CCoAOMT gene family in C. capsularis and C. olitorius. Comparative genomics analysis among the CCoAOMT gene families of 12 species revealed the close evolutionary relationship among Corchorus, Theobroma cacao and Gossypium raimondii. This study also shows that CCoAOMTs are not only involved in lignin biosynthesis, but also are associated with the abiotic stress response in jute, and suggests the potential use of these lignin-related genes to genetically improve the fiber quality of jute.
Assuntos
Corchorus , Metiltransferases , Corchorus/enzimologia , Corchorus/genética , Lignina/metabolismo , Metiltransferases/genética , FilogeniaRESUMO
Suitable flowering time can improve fiber yield and quality, which is of great significance for jute biological breeding. In this study, 242 jute accessions were planted in Fujian for 2 consecutive years, and 244,593 SNPs distributed in jute genome were used for genome-wide association analysis of flowering time. A total of 19 candidate intervals (P < 0.0001) were identified by using GLM and FaST-LMM and were significantly associated with flowering time, with phenotypic variation explained (PVE) ranging from 5.8 to 18.61%. Six stable intervals that were repeatedly detected in different environments were further identified by the linkage disequilibrium heatmap. The most likely 7 candidate genes involved to flowering time were further predicted according to the gene functional annotations. Notably, functional analysis of the candidate gene CcPRR7 of the major loci qFT-3-1, a key factor in circadian rhythm in the photoperiodic pathway, was evaluated by linkage, haplotype, and transgenic analysis. ß-glucuronidase (GUS) and luciferase (LUC) activity assay of the promoters with two specific haplotypes confirmed that the flowering time can be controlled by regulating the expression of CcPRR7. The model of CcPRR7 involved in the photoperiod regulation pathway under different photoperiods was proposed. These findings provide insights into genetic loci and genes for molecular marker-assisted selection in jute and valuable information for genetically engineering PRR7 homologs in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01435-8.
RESUMO
BACKGROUND: Single-cell RNA sequencing is becoming a powerful tool to identify cell states, reconstruct developmental trajectories, and deconvolute spatial expression. The rapid development of computational methods promotes the insight of heterogeneous single-cell data. An increasing number of tools have been provided for biological analysts, of which two programming languages- R and Python are widely used among researchers. R and Python are complementary, as many methods are implemented specifically in R or Python. However, the different platforms immediately caused the data sharing and transformation problem, especially for Scanpy, Seurat, and SingleCellExperiemnt. Currently, there is no efficient and user-friendly software to perform data transformation of single-cell omics between platforms, which makes users spend unbearable time on data Input and Output (IO), significantly reducing the efficiency of data analysis. RESULTS: We developed scDIOR for single-cell data transformation between platforms of R and Python based on Hierarchical Data Format Version 5 (HDF5). We have created a data IO ecosystem between three R packages (Seurat, SingleCellExperiment, Monocle) and a Python package (Scanpy). Importantly, scDIOR accommodates a variety of data types across programming languages and platforms in an ultrafast way, including single-cell RNA-seq and spatial resolved transcriptomics data, using only a few codes in IDE or command line interface. For large scale datasets, users can partially load the needed information, e.g., cell annotation without the gene expression matrices. scDIOR connects the analytical tasks of different platforms, which makes it easy to compare the performance of algorithms between them. CONCLUSIONS: scDIOR contains two modules, dior in R and diopy in Python. scDIOR is a versatile and user-friendly tool that implements single-cell data transformation between R and Python rapidly and stably. The software is freely accessible at https://github.com/JiekaiLab/scDIOR .
Assuntos
Ecossistema , Software , Algoritmos , Linguagens de Programação , RNA-SeqRESUMO
Traumatic brain injury (TBI) is a closed or open head injury caused by external mechanical forces that induce brain damage, resulting in a wide range of postinjury dysfunctions of emotions, learning and memory, adversely affecting the quality of life of patients. In this study, we aimed to explore the possible mechanisms of NOX2 on cognitive deficits in a TBI mouse model. Behavioral tests were applied to evaluate learning and memory ability, and electrophysiological experiments were performed to measure synaptic transmission and intrinsic excitability of the CA1 pyramidal cells (PCs) and long-term potentiation (LTP) in the TBI hippocampus. We found that inhibitors of nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2; NOX2) (GSK2795039 and apocynin) attenuate neurological deficits, facilitate long-term potentiation (LTP) and decrease spontaneous synaptic transmission and intrinsic excitability of CA1 pyramidal cells (PCs) in traumatic brain injury (TBI) mice. NOX2-/- mice display reduced learning and memory impairment, enhanced LTP and reduced spontaneous synaptic transmission and intrinsic excitability of PCs after TBI. Our study demonstrates that NOX2 is a potential target for learning and memory by modulating excitability and excitatory transmission in the hippocampus after TBI.
Assuntos
Lesões Encefálicas Traumáticas , Qualidade de Vida , Animais , Cognição , Hipocampo/metabolismo , Humanos , Camundongos , NADPH Oxidase 2/metabolismoRESUMO
BACKGROUND: Neutrophil CD64 (nCD64) index has been widely studied as an indication of bacteria-infected diseases, but the exact usage of nCD64 index in monitoring infections remains debated. So this study aims to investigate the functionality of nCD64 index in tracking infections' progression and evaluating antibiotic therapy. METHODS: 160 participants (36 healthy controls, 34 culture-negative patients, 56 respiratory tract infected patients, and 34 bloodstream infected patients) were recruited and divided into groups. Data on nCD64 index, T lymphocyte subsets, and conventional indicators, including white blood cell count, neutrophil to lymphocyte ratio, procalcitonin, and C-reactive protein, were tested and compared. RESULTS: Bacteria-infected patients had significantly higher nCD64 indexes (p < 0.05), especially patients with both bloodstream and respiratory tract infections. The nCD64 index could identify infected patients from culture-negative patients or controls, which conventional indicators cannot achieve. We followed up with 24 infected patients and found that their nCD64 indexes were promptly down-regulated after effective antibiotic therapy (3.16 ± 3.01 vs. 1.20 ± 1.47, p < 0.001). CONCLUSION: The nCD64 index is a sensitive indicator for clinical diagnosis of bacterial infection, especially in monitoring infection and evaluating antibiotics' efficacy. Therefore, nCD64 has the potential to improve diagnostic accuracy and provide rapid feedback on monitoring disease progression in infected patients.
Assuntos
Infecções Bacterianas , Neutrófilos , Humanos , Estudos de Casos e Controles , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/uso terapêutico , Pró-CalcitoninaRESUMO
Roselle (Hibiscus sabdariffa L.) is an annual herbaceous plant of the genus Hibiscus in family Malvaceae. Roselle calyxes are rich in anthocyanins, which play important roles in human health. However, limited information is available on anthocyanin biosynthesis in the roselle calyx. In this study, transcriptomic and metabolomic analyses were performed to identify the key genes involved in anthocyanin biosynthesis in the roselle calyx. Three roselle cultivars with different calyx colors, including FZ-72 (red calyx, R), Baitao K (green calyx, G), and MG5 (stripped calyx, S), were used for metabolomic analyses with UPLC-Q-TOF/MS and RNA-seq. Forty-one compounds were quantified, including six flavonoids and 35 anthocyanins. The calyx of FZ-72 (red calyx) had the highest contents of anthocyanin derivatives such as delphinidin-3-O-sambubioside (955.11 µg/g) and cyanidin-3-O-sambubioside (531.37 µg/g), which were responsible for calyx color, followed by those in MG5 (stripped calyx) (851.97 and 330.06 µg/g, respectively). Baitao K (green calyx) had the lowest levels of these compounds. Furthermore, RNA-seq analysis revealed 114,415 differentially expressed genes (DEGs) in the calyxes at 30 days after flowering (DAF) for the corresponding cultivars FZ-72 (R), Baitao K (G), and MG5(S). The gene expression levels in the calyxes of the three cultivars were compared at different flowering stages, revealing 11,555, 11,949, and 7177 DEGs in R vs. G, R vs. S, and G vs. S, respectively. Phenylpropanoid and flavonoid biosynthesis pathways were found to be enriched. In the flavonoid pathway, 29, 28, and 27 genes were identified in G vs. R, G vs. S, and S vs. R, respectively. In the anthocyanin synthesis pathway, two, two, and one differential genes were identified in the three combinations; these differential genes belonged to the UFGT gene family. After joint analysis of the anthocyanin content in roselle calyxes, nine key genes belonging to the CHS, CHI, UFGT, FLS, ANR, DFR, CCoAOMT, SAT, and HST gene families were identified as strongly related to anthocyanin synthesis. These nine genes were verified using qRT-PCR, and the results were consistent with the transcriptome data. Overall, this study presents the first report on anthocyanin biosynthesis in roselle, laying a foundation for breeding roselle cultivars with high anthocyanin content.
Assuntos
Hibiscus , Poríferos , Animais , Humanos , Antocianinas , Transcriptoma , Melhoramento Vegetal , FlavonoidesRESUMO
Cultivated jute, which comprises the two species Corchorus capsularis and C. olitorius, is the second most important natural fibre source after cotton. Here we describe chromosome-level assemblies of the genomes of both cultivated species. The C. capsularis and C. olitorius assemblies are each comprised of seven pseudo-chromosomes, with the C. capsularis assembly consisting of 336 Mb with 25,874 genes and the C. olitorius assembly containing 361 Mb with 28 479 genes. Although the two Corchorus genomes exhibit collinearity, the genome of C. olitorius contains 25 Mb of additional sequences than that of C. capsularis with 13 putative inversions, which might give a hint to the difference of phenotypic variants between the two cultivated jute species. Analysis of gene expression in isolated fibre tissues reveals candidate genes involved in fibre development. Our analysis of the population structures of 242 cultivars from C. capsularis and 57 cultivars from C. olitorius by whole-genome resequencing resulted in post-domestication bottlenecks occurred ~2000 years ago in these species. We identified hundreds of putative significant marker-trait associations (MTAs) controlling fibre fineness, cellulose content and lignin content of fibre by integrating data from genome-wide association studies (GWAS) with data from analyses of selective sweeps due to natural and artificial selection in these two jute species. Among them, we further validated that CcCOBRA1 and CcC4H1 regulate fibre quality in transgenic plants via improving the biosynthesis of the secondary cell wall. Our results yielded important new resources for functional genomics research and genetic improvement in jute and allied fibre crops.
Assuntos
Corchorus , Corchorus/genética , Estudo de Associação Genômica Ampla , Genômica , Lignina , Análise de Sequência de DNARESUMO
Kenaf is an annual crop that is widely cultivated as a source of bast (phloem) fibres, the phytoremediation of heavy metal-contaminated farmlands and textile-relevant compounds. Leaf shape played a unique role in kenaf improvement, due to the inheritance as a single locus and the association with fibre development in typical lobed-leaf varieties. Here we report a high-quality genome assembly and annotation for var. 'Fuhong 952' with 1078 Mbp genome and 66 004 protein-coding genes integrating single-molecule real-time sequencing, a high-density genetic map and high-throughput chromosome conformation capture techniques. Gene mapping assists the identification of a homeobox transcription factor LATE MERISTEM IDENTITY 1 (HcLMI1) gene controlling lobed-leaf. Virus-induced gene silencing (VIGS) of HcLMI1 in a lobed-leaf variety was critical to induce round (entire)-like leaf formation. Candidate genes involved in cell wall formation were found in quantitative trait loci (QTL) for fibre yield and quality-related traits. Comparative genomic and transcriptome analyses revealed key genes involved in bast fibre formation, among which there are twice as many cellulose synthase A (CesA) genes due to a recent whole-genome duplication after divergence from Gossypium. Population genomic analysis showed two recent population bottlenecks in kenaf, suggesting domestication and improvement process have led to an increase in fibre biogenesis and yield. This chromosome-scale genome provides an important framework and toolkit for sequence-directed genetic improvement of fibre crops.
Assuntos
Hibiscus , Mapeamento Cromossômico , Gossypium/genética , Hibiscus/genética , Folhas de Planta/genética , Locos de Características Quantitativas/genéticaRESUMO
Previous studies with biological and genetic evidence indicate that the myo-inositol monophosphatase 2 (IMPA2) gene may influence schizophrenia. We performed a genetic association study in Han Chinese cohorts. Five single nucleotide polymorphisms within IMPA2 promoter region (rs971363, rs971362, rs2075824, rs111410794 and rs111610121), as well as one (rs45442994, in intron 1) that was positively associated in another study, were selected for genotyping in 1397 patients with schizophrenia and 1285 mentally healthy controls. Genotype and allele frequencies were assessed by gender stratification. Interestingly, rs2075824 showed a strong association with schizophrenia (P = 4.1 × 10-4 ), and the T allele was more frequent in cases than controls [P = 5.6 × 10-5 , OR (95% CI) = 1.26 (1.13-1.41)]. In vitro promoter assay showed that the transcription activity of the T allele promoter was higher than that of the C allele promoter and the T allele of rs2075824 contributed to risk for schizophrenia. By stratifying males and females, we found a gender-specific association for IMPA2 and schizophrenia: the T allele of rs2075824 was more frequent in male cases compared with male controls [P = 1.4 × 10-4 , OR (95% CI) = 1.33 (1.15-1.55)]. Our data suggest that a promoter polymorphism of IMPA2 possibly contributed to risk for schizophrenia by elevating transcription activity in Han Chinese individuals.
Assuntos
Predisposição Genética para Doença , Monoéster Fosfórico Hidrolases/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Esquizofrenia/enzimologia , Esquizofrenia/genética , Transcrição Gênica , Adulto , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Caracteres Sexuais , Ativação Transcricional/genéticaRESUMO
BACKGROUND: Genetic mapping and quantitative trait locus (QTL) detection are powerful methodologies in plant improvement and breeding. White jute (Corchorus capsularis L.) is an important industrial raw material fiber crop because of its elite characteristics. However, construction of a high-density genetic map and identification of QTLs has been limited in white jute due to a lack of sufficient molecular markers. The specific locus amplified fragment sequencing (SLAF-seq) strategy combines locus-specific amplification and high-throughput sequencing to carry out de novo single nuclear polymorphism (SNP) discovery and large-scale genotyping. In this study, SLAF-seq was employed to obtain sufficient markers to construct a high-density genetic map for white jute. Moreover, with the development of abundant markers, genetic dissection of fiber yield traits such as plant height was also possible. Here, we present QTLs associated with plant height that were identified using our newly constructed genetic linkage groups. RESULTS: An F8 population consisting of 100 lines was developed. In total, 69,446 high-quality SLAFs were detected of which 5,074 SLAFs were polymorphic; 913 polymorphic markers were used for the construction of a genetic map. The average coverage for each SLAF marker was 43-fold in the parents, and 9.8-fold in each F8 individual. A linkage map was constructed that contained 913 SLAFs on 11 linkage groups (LGs) covering 1621.4 cM with an average density of 1.61 cM per locus. Among the 11 LGs, LG1 was the largest with 210 markers, a length of 406.34 cM, and an average distance of 1.93 cM between adjacent markers. LG11 was the smallest with only 25 markers, a length of 29.66 cM, and an average distance of 1.19 cM between adjacent markers. 'SNP_only' markers accounted for 85.54% and were the predominant markers on the map. QTL mapping based on the F8 phenotypes detected 11 plant height QTLs including one major effect QTL across two cultivation locations, with each QTL accounting for 4.14-15.63% of the phenotypic variance. CONCLUSIONS: To our knowledge, the linkage map constructed here is the densest one available to date for white jute. This analysis also identified the first QTL in white jute. The results will provide an important platform for gene/QTL mapping, sequence assembly, genome comparisons, and marker-assisted selection breeding for white jute.
Assuntos
Mapeamento Cromossômico/métodos , Corchorus/anatomia & histologia , Corchorus/genética , Locos de Características Quantitativas/genética , Análise de Sequência de DNA , Corchorus/crescimento & desenvolvimento , Marcadores Genéticos/genética , Técnicas de Genotipagem , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Reactions between arynes and alkyl sulfides have been extensively studied over the past few decades. These reactions commonly end with a dealkylation process and thus deliver thioethers as final products. In contrast, the transformation described furnishes valuable triarylsulfonium salts, in lieu of thioethers, from arynes and diarylsulfides. The reaction features mild conditions and a broad substrate scope. A suite of functional groups such as ketones, esters, nitriles, aryl ethers and aryl halides is tolerated, which can be issues faced by traditional synthetic methods. The practicality of the reaction and its extension to the synthesis of triphenyl selenonium salt are also exhibited herein.
RESUMO
BACKGROUND: Asthma is a common immune disorder characterized by increased IgE levels. The interleukin (IL)-4 and IL-13 pathway is central for IgE regulation, and previous studies have reported many genetic variants of IL-4/IL-13 signaling in relation to asthma, but few have focused on the gene-to-gene interactions that are likely to contribute to disease complexity. OBJECTIVE: To assess the combined effects of 7 functional single-nucleotide polymorphisms (SNPs) on asthma susceptibility, total serum IgE levels, and gene expression in children. METHODS: Seven SNPs (rs2243250, rs1800925, rs1805010, rs324011, rs2251746, rs2494262, and rs2427837) were genotyped children with asthma (n = 500) and a control group (n = 523), and total serum IgE levels and gene expressions were measured in children with asthma. RESULTS: Children with asthma had a likelier possibility of carrying more risk genotypes. Mean IgE levels increased from the minimum of 71.07 KU/L in children with no tested polymorphisms to a maximum of 901.7 KU/L in children carrying 7 risk genotypes. Gene expression analysis showed that patients with 4 SNPs (rs2243250, rs1800925, rs1805010, and rs3224011) had higher expression levels of IL-4, IL-13, and STAT6. Moreover, serum IgE level generally correlated well with IL-4 (r = 0.236, P = .011) and IL-13 (r = 0.211, P = .021) expressions; IL-4 expression correlated positively with IL-13 (r = 0.962, P = .000) and STAT6 (r = 0.190, P = .022) expressions, and STAT6 expression correlated with IL-4RA expression (r = 0.904, P = .000). CONCLUSION: These data suggest that combinations of multiple SNPs might magnify the impact on disease risk. Only a combined analysis of the variants in the IL-4/IL-13 pathway could show the functional interplay of multiple genes in asthma.
Assuntos
Asma/sangue , Asma/genética , Predisposição Genética para Doença , Imunoglobulina E/sangue , Interleucina-13/genética , Interleucina-4/genética , Adolescente , Criança , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Frequência do Gene , Genótipo , Humanos , Interleucina-13/sangue , Interleucina-4/sangue , Subunidade alfa de Receptor de Interleucina-4/sangue , Subunidade alfa de Receptor de Interleucina-4/genética , Masculino , Polimorfismo de Nucleotídeo Único , Fator de Transcrição STAT6/sangueAssuntos
Exossomos/imunologia , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Receptores de IgE/imunologia , Animais , Exossomos/genética , Exossomos/patologia , Feminino , Hipersensibilidade/genética , Hipersensibilidade/patologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de IgE/genéticaRESUMO
Abdominal pregnancy is a rare and life-threatening form of ectopic pregnancy. Although the underlying mechanism of this abnormal disorder is unknown, a number of risk factors have been identified, including pelvic inflammatory disease, history of pelvic surgery, intrauterine device use and previous ectopic pregnancy. Diaphragmatic rupture due to ectopic pregnancy is a rare and life-threatening condition that can lead to massive intraperitoneal haemorrhage and haemorrhagic shock. This report presents the case of a 21-year-old woman who presented with 7 weeks and 4 days of amenorrhoea and 14 hours of acute abdominal pain. On examination, she was in haemorrhagic shock with signs of acute abdomen. Emergency exploratory laparotomy revealed a haemoperitoneum of 1500 mL and active bleeding from a 3×2 cm rupture in the right hemidiaphragm. Haemostasis was achieved and the patient recovered well post-operatively. This case highlights the importance of considering diaphragmatic rupture in the differential diagnosis of acute abdomen and haemorrhagic shock, especially in patients with ectopic pregnancy.
RESUMO
This study's objective was to observe the application effect of psychological counseling intervention based on the WeChat platform for patients with gastrointestinal tumors undergoing chemotherapy with completely implanted venous infusion ports. From October 2022 to December 2023, 110 patients with gastrointestinal tumors undergoing chemotherapy with completely implanted venous infusion ports were selected from our hospital. Patients were divided into 2 groups according to the different types of care. The control group received routine psychological counseling intervention, while the WeChat group received psychological counseling intervention based on the WeChat platform in addition to the routine intervention provided to the control group. A comparison was made between the 2 groups in terms of adverse events, compliance, hope level scores, and changes in coping strategy scores. The WeChat group experienced 7 adverse events, with an occurrence rate of 12.73%, while the control group experienced 17 adverse events, with an occurrence rate of 30.91%. The occurrence rate of adverse events in the WeChat group was significantly lower than that in the control group, showing a statistically significant difference (Pâ <â .05). The hope level scores before intervention in the 2 groups were compared (Pâ >â .05). Compared to before intervention, both groups showed an increase in scores for life attitude, proactive behavior, intimate relationships, and total scores. The WeChat group had higher scores after intervention compared to the control group (Pâ <â .05). The coping strategy scores before intervention in the 2 groups were compared (Pâ >â .05). Compared to before intervention, both groups showed an increase in facing scores and a decrease in avoidance and resignation scores (Pâ <â .05). After intervention, the WeChat group had higher facing scores and lower avoidance and resignation scores compared to the control group (Pâ <â .05). The overall chemotherapy compliance in the WeChat group was higher than that in the control group (Pâ <â .05). Psychological counseling intervention based on the WeChat platform can improve the level of hope, promote patients to face the disease with a positive attitude, increase chemotherapy compliance, and reduce the occurrence of adverse events in patients with gastrointestinal tumors undergoing chemotherapy with completely implanted venous infusion ports.