Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nucl Med ; 48(5): 776-82, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17475967

RESUMO

UNLABELLED: Conventional visual analysis of brain (18)F-FDG PET scans is useful for predicting postsurgical improvement for temporal lobe epilepsy (TLE) patients, but prognostic value for identifying patients who will achieve seizure-free status is considerably lower. We aimed to develop an approach with which to quantitatively assess prognostically pertinent aspects of metabolic asymmetry in presurgical PET scans for forecasting postsurgical seizure-free clinical outcomes. METHODS: Presurgical brain PET scans of 75 TLE patients were examined using a display/analysis tool that quantified maximal metabolic asymmetry in a specified proportion (x%) of the temporal lobe pixels in the most asymmetric plane, generating a temporal lobe asymmetry index (T-AI(x)). Results of this analysis were compared with patients' actual postsurgical outcomes after an average of approximately 4 y of clinical follow-up. The investigation was divided into 2 main steps: The PET scans examined in the first step, selected by chronological order of scan acquisition dates, comprised just less than two thirds of the patient group studied (n=47) and were used to look for parameters predicting seizure-free postsurgical outcome; in the second step, the predictive value of the parameters suggested by the analysis in the first step was independently examined using the set of remaining PET scans (n=28) to check for wider applicability of the approach. RESULTS: Of the 75 patients studied, 42 became seizure free after surgery, whereas 33 continued to seize beyond the immediate postoperative period, during a mean 3.8-y follow-up interval. The specified proportion of temporal pixels with which to assess maximal asymmetry that provided the highest prognostic value with respect to achieving seizure-free status was 20%. Across the study population, those patients with scans having lower T-AI(20) values (corresponding to <40% difference in pixel intensities between left and right temporal lobes, among the 20% most asymmetric left-right pixel pairs measured in the most asymmetric plane) were only half as likely to continue to have seizures postsurgically as those with scans having higher T-AI(20) values (positive likelihood ratio for achieving seizure-free outcome, 1.98; 95% confidence interval, 1.07-3.67). Overall, those patients with greater maximal asymmetry, as indexed by higher T-AI(20) values, had a significantly decreased chance of achieving seizure-free status after surgery than those with lower degrees of asymmetry (P=0.017), and this same tendency was observed for both the first and second series of PET scans examined. CONCLUSION: A quantifying approach to assessing maximal temporal asymmetry over a specified proportion of the temporal lobe may help to predict whether patients will likely be free of seizures during the years after neurosurgical resection of epileptogenic tissue.


Assuntos
Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/cirurgia , Fluordesoxiglucose F18/farmacocinética , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Prognóstico , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA