Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Sci ; 30(1): 31, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210493

RESUMO

BACKGROUND: Klebsiella pneumoniae capsular types K1, K2, K5, K20, K54, and K57 are prevalent hypervirulent types associated with community infections, and worrisomely, hypervirulent strains that acquired drug resistance have been found. In the search for alternative therapeutics, studies have been conducted on phages that infect K. pneumoniae K1, K2, K5, and K57-type strains and their phage-encoded depolymerases. However, phages targeting K. pneumoniae K20-type strains and capsule depolymerases capable of digesting K20-type capsules have rarely been reported. In this study, we characterized a phage that can infect K. pneumoniae K20-type strains, phage vB_KpnM-20. METHODS: A phage was isolated from sewage water in Taipei, Taiwan, its genome was analyzed, and its predicted capsule depolymerases were expressed and purified. The host specificity and capsule-digesting activity of the capsule depolymerases were determined. The therapeutic effect of the depolymerase targeting K. pneumoniae K20-type strains was analyzed in a mouse infection model. RESULTS: The isolated Klebsiella phage, vB_KpnM-20, infects K. pneumoniae K7, K20, and K27-type strains. Three capsule depolymerases, K7dep, K20dep, and K27dep, encoded by the phage were specific to K7, K20, and K27-type capsules, respectively. K20dep also recognized Escherichia coli K30-type capsule, which is highly similar to K. pneumoniae K20-type. The survival of K. pneumoniae K20-type-infected mice was increased following administration of K20dep. CONCLUSIONS: The potential of capsule depolymerase K20dep for the treatment of K. pneumoniae infections was revealed using an in vivo infection model. In addition, K7dep, K20dep, and K27dep capsule depolymerases could be used for K. pneumoniae capsular typing.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Animais , Camundongos , Klebsiella pneumoniae/genética , Cápsulas , Glicosídeo Hidrolases/genética , Bacteriófagos/genética , Modelos Animais de Doenças
2.
Gut ; 71(2): 309-321, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33687943

RESUMO

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a global disease characterised by chronic obstruction of lung airflow interfering with normal breathing. Although the microbiota of respiratory tract is established to be associated with COPD, the causality of gut microbiota in COPD development is not yet established. We aimed to address the connection between gut microbiota composition and lung COPD development, and characterise bacteria and their derived active components for COPD amelioration. DESIGN: A murine cigarette smoking (CS)-based model of COPD and strategies evaluating causal effects of microbiota were performed. Gut microbiota structure was analysed, followed by isolation of target bacterium. Single cell RNA sequencing, together with sera metabolomics analyses were performed to identify host responsive molecules. Bacteria derived active component was isolated, followed by functional assays. RESULTS: Gut microbiota composition significantly affects CS-induced COPD development, and faecal microbiota transplantation restores COPD pathogenesis. A commensal bacterium Parabacteroides goldsteinii was isolated and shown to ameliorate COPD. Reduction of intestinal inflammation and enhancement of cellular mitochondrial and ribosomal activities in colon, systematic restoration of aberrant host amino acids metabolism in sera, and inhibition of lung inflammations act as the important COPD ameliorative mechanisms. Besides, the lipopolysaccharide derived from P. goldsteinii is anti-inflammatory, and significantly ameliorates COPD by acting as an antagonist of toll-like receptor 4 signalling pathway. CONCLUSION: The gut microbiota-lung COPD axis was connected. A potentially benefial bacterial strain and its functional component may be developed and used as alternative agents for COPD prevention or treatment.


Assuntos
Bacteroidetes/isolamento & purificação , Microbioma Gastrointestinal/fisiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Animais , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar
3.
J Biomed Sci ; 29(1): 9, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130876

RESUMO

BACKGROUND: K1 capsular polysaccharide (CPS)-associated Klebsiella pneumoniae is the primary cause of pyogenic liver abscesses (PLA) in Asia. Patients with PLA often have serious complications, ultimately leading to a mortality of ~ 5%. This K1 CPS has been reported as a promising target for development of glycoconjugate vaccines against K. pneumoniae infection. The pyruvylation and O-acetylation modifications on the K1 CPS are essential to the immune response induced by the CPS. To date, however, obtaining the fragments of K1 CPS that contain the pyruvylation and O-acetylation for generating glycoconjugate vaccines still remains a challenge. METHODS: We analyzed the digested CPS products with NMR spectroscopy and mass spectrometry to reveal a bacteriophage-derived polysaccharide depolymerase specific to K1 CPS. The biochemical and biophysical properties of the enzyme were characterized and its crystal structures containing bound CPS products were determined. We also performed site-directed mutagenesis, enzyme kinetic analysis, phage absorption and infectivity studies, and treatment of the K. pneumoniae-infected mice with the wild-type and mutant enzymes. RESULTS: We found a bacteriophage-derived polysaccharide lyase that depolymerizes the K1 CPS into fragments of 1-3 repeating trisaccharide units with the retention of the pyruvylation and O-acetylation, and thus the important antigenic determinants of intact K1 CPS. We also determined the 1.46-Å-resolution, product-bound crystal structure of the enzyme, revealing two distinct carbohydrate-binding sites in a trimeric ß-helix architecture, which provide the first direct evidence for a second, non-catalytic, carbohydrate-binding site in bacteriophage-derived polysaccharide depolymerases. We demonstrate the tight interaction between the pyruvate moiety of K1 CPS and the enzyme in this second carbohydrate-binding site to be crucial to CPS depolymerization of the enzyme as well as phage absorption and infectivity. We also demonstrate that the enzyme is capable of protecting mice from K1 K. pneumoniae infection, even against a high challenge dose. CONCLUSIONS: Our results provide insights into how the enzyme recognizes and depolymerizes the K1 CPS, and demonstrate the potential use of the protein not only as a therapeutic agent against K. pneumoniae, but also as a tool to prepare structurally-defined oligosaccharides for the generation of glycoconjugate vaccines against infections caused by this organism.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Liases , Animais , Cápsulas Bacterianas/genética , Bacteriófagos/genética , Humanos , Cinética , Klebsiella pneumoniae , Camundongos
4.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361859

RESUMO

Autism spectrum disorder (ASD) is characterized by cognitive inflexibility and social deficits. Probiotics have been demonstrated to play a promising role in managing the severity of ASD. However, there are no effective probiotics for clinical use. Identifying new probiotic strains for ameliorating ASD is therefore essential. Using the maternal immune activation (MIA)-based offspring ASD-like mouse model, a probiotic-based intervention strategy was examined in female mice. The gut commensal microbe Parabacteroides goldsteinii MTS01, which was previously demonstrated to exert multiple beneficial effects on chronic inflammation-related-diseases, was evaluated. Prenatal lipopolysaccharide (LPS) exposure induced leaky gut-related inflammatory phenotypes in the colon, increased LPS activity in sera, and induced autistic-like behaviors in offspring mice. By contrast, P. goldsteinii MTS01 treatment significantly reduced intestinal and systemic inflammation and ameliorated disease development. Transcriptomic analyses of MIA offspring indicated that in the intestine, P. goldsteinii MTS01 enhanced neuropeptide-related signaling and suppressed aberrant cell proliferation and inflammatory responses. In the hippocampus, P. goldsteinii MTS01 increased ribosomal/mitochondrial and antioxidant activities and decreased glutamate receptor signaling. Together, significant ameliorative effects of P. goldsteinii MTS01 on ASD relevant behaviors in MIA offspring were identified. Therefore, P. goldsteinii MTS01 could be developed as a next-generation probiotic for ameliorating ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Camundongos , Feminino , Animais , Transtorno do Espectro Autista/etiologia , Lipopolissacarídeos/farmacologia , Modelos Animais de Doenças , Inflamação , Comportamento Animal
5.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887145

RESUMO

Metabolic surgery is a promising treatment for obese individuals with type 2 diabetes mellitus (T2DM), but the mechanism is not completely understood. Current understanding of the underlying ameliorative mechanisms relies on alterations in parameters related to the gastrointestinal hormones, biochemistry, energy absorption, the relative composition of the gut microbiota, and sera metabolites. A total of 13 patients with obesity and T2DM undergoing metabolic surgery treatments were recruited. Systematic changes of critical parameters and the effects and markers after metabolic surgery, in a longitudinal manner (before surgery and three, twelve, and twenty-four months after surgery) were measured. The metabolomics pattern, gut microbiota composition, together with the hormonal and biochemical characterizations, were analyzed. Body weight, body mass index, total cholesterol, triglyceride, fasting glucose level, C-peptide, HbA1c, HOMA-IR, gamma-glutamyltransferase, and des-acyl ghrelin were significantly reduced two years after metabolic surgery. These were closely associated with the changes of sera metabolomics and gut microbiota. Significant negative associations were found between the Eubacterium eligens group and lacosamide glucuronide, UDP-L-arabinose, lanceotoxin A, pipercyclobutanamide B, and hordatine B. Negative associations were identified between Ruminococcaceae UCG-003 and orotidine, and glucose. A positive correlation was found between Enterococcus and glutamic acid, and vindoline. Metabolic surgery showed positive effects on the amelioration of diabetes and metabolic syndromes, which were closely associated with the change of sera metabolomics, the gut microbiota, and other disease-related parameters.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Humanos , Metabolômica , Obesidade/metabolismo
6.
J Biomed Sci ; 28(1): 60, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452635

RESUMO

BACKGROUND: Streptococcus pneumoniae is a common cause of post-influenza secondary bacterial infection, which results in excessive morbidity and mortality. Although 13-valent pneumococcal conjugate vaccine (PCV13) vaccination programs have decreased the incidence of pneumococcal pneumonia, PCV13 failed to prevent serotype 3 pneumococcal disease as effectively as other vaccine serotypes. We aimed to investigate the mechanisms underlying the co-pathogenesis of influenza virus and serotype 3 pneumococci. METHODS: We carried out a genome-wide screening of a serotype 3 S. pneumoniae transposon insertion mutant library in a mouse model of coinfection with influenza A virus (IAV) to identify the bacterial factors required for this synergism. RESULTS: Direct, high-throughput sequencing of transposon insertion sites identified 24 genes required for both coinfection and bacterial infection alone. Targeted deletion of the putative aminotransferase (PA) gene decreased bacterial growth, which was restored by supplementation with methionine. The bacterial burden in a coinfection with the PA gene deletion mutant and IAV in the lung was lower than that in a coinfection with wild-type pneumococcus and IAV, but was significantly higher than that in an infection with the PA gene deletion mutant alone. These data suggest that IAV infection alters host metabolism to benefit pneumococcal fitness and confer higher susceptibility to pneumococcal infection. We further demonstrated that bacterial growth was increased by supplementation with methionine or IAV-infected mouse lung homogenates. CONCLUSIONS: The data indicates that modulation of host metabolism during IAV infection may serve as a potential therapeutic intervention against secondary bacterial infections caused by serotype 3 pneumococci during IAV outbreaks in the future.


Assuntos
Coinfecção , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/virologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , Transcriptoma , Animais , Coinfecção/microbiologia , Coinfecção/virologia , Feminino , Genoma Bacteriano , Camundongos , Camundongos Endogâmicos BALB C
7.
Emerg Infect Dis ; 26(4): 711-720, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32186492

RESUMO

Incidence of invasive pneumococcal disease caused by antimicrobial-resistant Streptococcus pneumoniae types not included in pneumococcal conjugate vaccines has increased, including a penicillin- and meropenem-resistant serotype 15A-ST63 clone in Japan. During 2013-2017, we collected 206 invasive pneumococcal isolates in Taiwan for penicillin and meropenem susceptibility testing. We found serotypes 15B/C-ST83 and 15A-ST63 were the most prevalent penicillin- and meropenem-resistant clones. A transformation study confirmed that penicillin-binding protein (PBP) 2b was the primary meropenem resistance determinant, and PBP1a was essential for high-level resistance. The rate of serotype 15B/C-ST83 increased during the study. All 15B/C-ST83 isolates showed an ermB macrolide resistance genotype. Prediction analysis of recombination sites revealed 12 recombination regions in 15B/C-ST83 compared with the S. pneumoniae Spain23F-ST81 genome. Pneumococcal clones rapidly recombine to acquire survival advantages and undergo local expansion under the selective pressure exerted by vaccines and antimicrobial drugs. The spread of 15B/C-ST83 is alarming for countries with high antimicrobial pressure.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Genômica , Humanos , Japão , Macrolídeos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Infecções Pneumocócicas/epidemiologia , Sorogrupo , Sorotipagem , Espanha , Streptococcus pneumoniae/genética , Taiwan/epidemiologia
8.
J Org Chem ; 85(24): 15964-15997, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33108196

RESUMO

Klebsiella pneumoniae causes pneumonia and liver abscesses in humans worldwide and contains virulence factor capsular polysaccharides and lipopolysaccharides linked to the cell wall. Although capsular polysaccharides are good antigens for vaccine production and capsular oligosaccharides conjugate vaccines are proven effective against infections caused by encapsulated pathogens, there is still no Klebsiella pneumoniae vaccine available. One obstacle is that the capsular polysaccharide of a dominated Klebsiella pneumoniae serotype K2 is difficult to synthesize chemically due to the three 1,2-cis linkages in its structure. In this study, we successfully synthesized K2 capsular polysaccharides from tetra- to octasaccharides in highly a stereoselective manner. Subsequently, three synthesized glycans were conjugated to DT protein to provide glycoconjugate vaccine candidates (DT-Hexa, DT-Hepta, and DT-Octa) that were used in in vivo immunization experiments in mice. The results of immunized studies showed all three glycoconjugates elicited antibodies that recognized all of the synthetic glycans at 1:200-fold dilution. Particularly, the DT-Hepta conjugate elicited a higher level of antibodies that can recognize longer glycan (octasaccharide) even at 1:12800-fold dilution and exhibited good bactericidal activity. Our results concluded that heptasaccharide is the minimal epitope and a potential candidate for the vaccine against the K2 sero group of Klebsiella pneumoniae.


Assuntos
Glicoconjugados , Klebsiella pneumoniae , Animais , Camundongos , Polissacarídeos , Polissacarídeos Bacterianos , Sorogrupo , Vacinas Conjugadas
9.
J Infect Dis ; 219(4): 637-647, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30202982

RESUMO

Background: We previously isolated a Klebsiella pneumoniae strain, NTUH-K2044, from a community-acquired pyogenic liver abscess (PLA) patient. Analysis of the NTUH-K2044 genome revealed that this strain harbors 2 putative type VI secretion system (T6SS)-encoding gene clusters. Methods: The distribution of T6SS genes in the PLA and intestinal-colonizing K pneumoniae clinical isolates was examined. icmF1-, icmF2-, icmF1/icmF2-, and hcp-deficient K pneumoniae strains were constructed using an unmarked deletion method. The roles of T6SSs in antibacterial activity, type-1 fimbriae expression, cell adhesion, and invasion and intestinal colonization were determined. Results: The prevalence of T6SSs is higher in the PLA strains than in the intestinal-colonizing strains (37 of 42 vs 54 of 130). Deletion of icmF1/icmF2 and hcp genes significantly reduced interbacterial and intrabacterial killing. Strain deleted for icmF1 and icmF2 exhibited decreased transcriptional expression of type-1 fimbriae and reduced adherence to and invasion of human colorectal epithelial cells and was attenuated for in vivo competition to enable colonization of the host gut. Finally, Hcp expression in K pneumoniae was silenced by the histone-like nucleoid structuring protein via direct binding. Conclusions: These results provide new insights into T6SS-mediated bacterial competition and attachment in K pneumoniae and could facilitate the prevention of K pneumoniae infection.


Assuntos
Células Epiteliais/microbiologia , Intestinos/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/metabolismo , Animais , Aderência Bacteriana , Modelos Animais de Doenças , Endocitose , Fímbrias Bacterianas/metabolismo , Deleção de Genes , Genes Bacterianos , Humanos , Klebsiella pneumoniae/genética , Camundongos Endogâmicos BALB C , Modelos Biológicos , Sistemas de Secreção Tipo VI/genética , Virulência , Fatores de Virulência/genética
10.
J Infect Dis ; 219(8): 1294-1306, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30476200

RESUMO

Klebsiella pneumoniae is an important human pathogen causing hospital-acquired and community-acquired infections. Systemic K. pneumoniae infections may be preceded by gastrointestinal colonization, but the basis of this bacterium's interaction with the intestinal epithelium remains unclear. Here, we report that the K. pneumoniae Sap (sensitivity to antimicrobial peptides) transporter contributes to bacterial-host cell interactions and in vivo virulence. Gene deletion showed that sapA is required for the adherence of a K. pneumoniae blood isolate to intestinal epithelial, lung epithelial, urinary bladder epithelial, and liver cells. The ΔsapA mutant was deficient for translocation across intestinal epithelial monolayers, macrophage interactions, and induction of proinflammatory cytokines. In a mouse gastrointestinal infection model, ΔsapA yielded significantly decreased bacterial loads in liver, spleen and intestine, reduced liver abscess generation, and decreased mortality. These findings offer new insights into the pathogenic interaction of K. pneumoniae with the host gastrointestinal tract to cause systemic infection.


Assuntos
Intestinos/microbiologia , Infecções por Klebsiella/patologia , Klebsiella pneumoniae , Abscesso Hepático/etiologia , Fatores de Virulência/fisiologia , Animais , Feminino , Humanos , Imunidade Inata , Intestinos/patologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/patogenicidade , Abscesso Hepático/microbiologia , Camundongos , Camundongos Endogâmicos BALB C
11.
Gut ; 68(2): 248-262, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30007918

RESUMO

OBJECTIVE: The medicinal fungus Ophiocordyceps sinensis and its anamorph Hirsutella sinensis have a long history of use in traditional Chinese medicine for their immunomodulatory properties. Alterations of the gut microbiota have been described in obesity and type 2 diabetes. We examined the possibility that H. sinensis mycelium (HSM) and isolated fractions containing polysaccharides may prevent diet-induced obesity and type 2 diabetes by modulating the composition of the gut microbiota. DESIGN: High-fat diet (HFD)-fed mice were treated with HSM or fractions containing polysaccharides of different molecular weights. The effects of HSM and polysaccharides on the gut microbiota were assessed by horizontal faecal microbiota transplantation (FMT), antibiotic treatment and 16S rDNA-based microbiota analysis. RESULTS: Fraction H1 containing high-molecular weight polysaccharides (>300 kDa) considerably reduced body weight gain (∼50% reduction) and metabolic disorders in HFD-fed mice. These effects were associated with increased expression of thermogenesis protein markers in adipose tissues, enhanced gut integrity, reduced intestinal and systemic inflammation and improved insulin sensitivity and lipid metabolism. Gut microbiota analysis revealed that H1 polysaccharides selectively promoted the growth of Parabacteroides goldsteinii, a commensal bacterium whose level was reduced in HFD-fed mice. FMT combined with antibiotic treatment showed that neomycin-sensitive gut bacteria negatively correlated with obesity traits and were required for H1's anti-obesogenic effects. Notably, oral treatment of HFD-fed mice with live P. goldsteinii reduced obesity and was associated with increased adipose tissue thermogenesis, enhanced intestinal integrity and reduced levels of inflammation and insulin resistance. CONCLUSIONS: HSM polysaccharides and the gut bacterium P. goldsteinii represent novel prebiotics and probiotics that may be used to treat obesity and type 2 diabetes.


Assuntos
Ascomicetos , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/fisiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Polissacarídeos Fúngicos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/prevenção & controle , Animais , Dieta Hiperlipídica , Transplante de Microbiota Fecal , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Prebióticos , Simbiose
12.
J Biomed Sci ; 26(1): 3, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30609922

RESUMO

Dysbiosis of gut microbiota is closely related to occurrence of many important chronic inflammations-related diseases. So far the traditionally prescribed prebiotics and probiotics do not show significant impact on amelioration of these diseases in general. Thus the development of next generation prebiotics and probiotics designed to target specific diseases is urgently needed. In this review, we first make a brief introduction on current understandings of normal gut microbiota, microbiome, and their roles in homeostasis of mucosal immunity and gut integrity. Then, under the situation of microbiota dysbiosis, development of chronic inflammations in the intestine occurs, leading to leaky gut situation and systematic chronic inflammation in the host. These subsequently resulted in development of many important diseases such as obesity, type 2 diabetes mellitus, liver inflammations, and other diseases such as colorectal cancer (CRC), obesity-induced chronic kidney disease (CKD), the compromised lung immunity, and some on brain/neuro disorders. The strategy used to optimally implant the effective prebiotics, probiotics and the derived postbiotics for amelioration of the diseases is presented. While the effectiveness of these agents seems promising, additional studies are needed to establish recommendations for most clinical settings.


Assuntos
Disbiose/complicações , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Prebióticos/administração & dosagem , Probióticos/administração & dosagem , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia
14.
J Antimicrob Chemother ; 73(6): 1509-1516, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506266

RESUMO

Background: Colistin is one of the last-resort antibiotics used to treat carbapenem-resistant Klebsiella pneumoniae infection. Our previous studies indicated that clinical strains encoding CrrB with amino acid substitutions exhibited higher colistin resistance (MICs ≥512 mg/L) than did colistin-resistant strains encoding mutant MgrB, PmrB or PhoQ. Objectives: CrrAB may regulate another unknown mechanism(s) contributing to colistin resistance, besides modifications of LPS with 4-amino-4-deoxy-l-arabinose and phosphoethanolamine. Methods: To identify these potential unknown mechanism(s), a transposon mutant library of A4528 crrB(N141I) was constructed. Loci that might contribute to colistin resistance and were regulated by crrB were confirmed by deletion and complementation experiments. Results: Screening of 2976 transposon mutants identified 47 mutants in which the MICs of colistin were significantly decreased compared with that for the parent. Besides crrAB, crrC and pmrHFIJKLM operons, these 47 transposon insertion mutants included another 13 loci. Notably, transcript levels of one of these insertion targets, H239_3064 (encoding a putative RND-type efflux pump), were significantly increased in A4528 crrB(N141I) compared with the A4528 parent strain. Deletion of H239_3064 in the A4528 crrB(N141I) background resulted in an 8-fold decrease in the MIC of colistin; complementation of the deletion mutant with H239_3064 restored resistance to colistin. Susceptibilities of A4528-derived strains to other antibiotics were also tested. Mutations of crrB resulted in decreased susceptibility to tetracycline and tigecycline, and deletion of H239_3064 in A4528 crrB(N141I) attenuated this phenomenon. Conclusions: This study demonstrated that missense mutations of K. pneumoniae crrB lead to increased expression of H239_3064, leading in turn to decreased susceptibility to colistin, tetracycline and tigecycline.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Proteínas de Membrana Transportadoras/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação de Sentido Incorreto , Óperon , Tetraciclina/farmacologia , beta-Lactamases
15.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077636

RESUMO

The genome of the multihost bacteriophage ΦK64-1, capable of infecting Klebsiella capsular types K1, K11, K21, K25, K30, K35, K64, and K69, as well as new capsular types KN4 and KN5, was analyzed and revealed that 11 genes (S1-1, S1-2, S1-3, S2-1, S2-2, S2-3, S2-4, S2-5, S2-6, S2-7, and S2-8) encode proteins with amino acid sequence similarity to tail fibers/spikes or lyases. S2-5 previously was shown to encode a K64 capsule depolymerase (K64dep). Specific capsule-degrading activities of an additional eight putative capsule depolymerases (S2-4 against K1, S1-1 against K11, S1-3 against K21, S2-2 against K25, S2-6 against K30/K69, S2-3 against K35, S1-2 against KN4, and S2-1 against KN5) was demonstrated by expression and purification of the recombinant proteins. Consistent with the capsular type-specific depolymerization activity of these gene products, phage mutants of S1-2, S2-2, S2-3, or S2-6 lost infectivity for KN4, K25, K35, or K30/K69, respectively, indicating that capsule depolymerase is crucial for infecting specific hosts. In conclusion, we identified nine functional capsule depolymerase-encoding genes in a bacteriophage and correlated activities of the gene products to all ten hosts of this phage, providing an example of type-specific host infection mechanisms in a multihost bacteriophage.IMPORTANCE We currently identified eight novel capsule depolymerases in a multihost Klebsiella bacteriophage and correlated the activities of the gene products to all hosts of this phage, providing an example of carriage of multiple depolymerases in a phage with a wide capsular type host spectrum. Moreover, we also established a recombineering system for modification of Klebsiella bacteriophage genomes and demonstrated the importance of capsule depolymerase for infecting specific hosts. Based on the powerful tool for modification of phage genome, further studies can be conducted to improve the understanding of mechanistic details of Klebsiella phage infection. Furthermore, the newly identified capsule depolymerases will be of great value for applications in capsular typing.


Assuntos
Cápsulas Bacterianas/metabolismo , Bacteriófagos/enzimologia , Bacteriófagos/genética , Hidrolases/genética , Hidrolases/metabolismo , Klebsiella/virologia , Clonagem Molecular , Expressão Gênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Antimicrob Agents Chemother ; 60(6): 3709-16, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067316

RESUMO

Colistin is a last-resort antibiotic for treatment of carbapenem-resistant Klebsiella pneumoniae A recent study indicated that missense mutations in the CrrB protein contribute to colistin resistance. In our previous study, mechanisms of colistin resistance were defined in 17 of 26 colistin-resistant K. pneumoniae clinical isolates. Of the remaining nine strains, eight were highly resistant to colistin. In the present study, crrAB sequences were determined for these eight strains. Six separate amino acid substitutions in CrrB (Q10L, Y31H, W140R, N141I, P151S, and S195N) were detected. Site-directed mutagenesis was used to generate crrB loci harboring individual missense mutations; introduction of the mutated genes into a susceptible strain, A4528, resulted in 64- to 1,024-fold increases in colistin MICs. These crrB mutants showed increased accumulation of H239_3062, H239_3059, pmrA, pmrC, and pmrH transcripts by quantitative reverse transcription (qRT)-PCR. Deletion of H239_3062 (but not that of H239_3059) in the A4528 crrB(N141I) strain attenuated resistance to colistin, and H239_3062 was accordingly named crrC Similarly, accumulation of pmrA, pmrC, and pmrH transcripts induced by crrB(N141I) was significantly attenuated upon deletion of crrC Complementation of crrC restored resistance to colistin and accumulation of pmrA, pmrC, and pmrH transcripts in a crrB(N141I) ΔcrrC strain. In conclusion, novel individual CrrB amino acid substitutions (Y31H, W140R, N141I, P151S, and S195N) were shown to be responsible for colistin resistance. We hypothesize that CrrB mutations induce CrrC expression, thereby inducing elevated expression of the pmrHFIJKLM operon and pmrC (an effect mediated via the PmrAB two-component system) and yielding increased colistin resistance.


Assuntos
Substituição de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Klebsiella pneumoniae/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Teste de Complementação Genética , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Óperon , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Infect Immun ; 83(2): 769-79, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452552

RESUMO

Klebsiella pneumoniae is an important pathogen that causes hospital-acquired septicemia and is associated with the recent emergence of community-acquired pyogenic liver abscess (PLA). Clinical typing suggests that K. pneumoniae infections originate from the gastrointestinal reservoir. However, the underlying mechanism remains unknown. Here, we have sought to determine how K. pneumoniae penetrates the intestinal barrier. We identified that bacteremia and PLA clinical isolates adhered to and invaded intestinal epithelial cells. Internalization of K. pneumoniae in three different human colonic cell lines was visualized by confocal microscopy and three-dimensional (3D) imaging. Using a Transwell system, we demonstrated that these K. pneumoniae isolates translocated across a polarized Caco-2 monolayer. No disruptions of transepithelial electrical resistance and altered distribution of tight junction protein ZO-1 or occludin were observed. Therefore, K. pneumoniae appeared to penetrate the intestinal epithelium via a transcellular pathway. Using specific inhibitors, we characterized the host signaling pathways involved. Inhibition by cytochalasin D and nocodazole suggested that actin and microtubule cytoskeleton were both important for K. pneumoniae invasion. A Rho inhibitor, ML141, LY294002, and an Akt1/2 inhibitor diminished K. pneumoniae invasion in a dose-dependent manner, indicating that Rho family GTPases and phosphatidylinositol 3-kinase (PI3K)/Akt signaling were required. By a mouse model of gastrointestinal colonization, in vivo invasion of K. pneumoniae into colonic epithelial cells was demonstrated. Our results present evidence to describe a possible mechanism of gastrointestinal translocation for K. pneumoniae. Cell invasion by manipulating host machinery provides a pathway for gut-colonized K. pneumoniae cells to penetrate the intestinal barrier and access extraintestinal locations to cause disease.


Assuntos
Mucosa Intestinal/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Citoesqueleto de Actina , Animais , Bacteriemia/imunologia , Bacteriemia/microbiologia , Células CACO-2 , Linhagem Celular Tumoral , Cromonas/farmacologia , Citocalasina D/farmacologia , Feminino , Humanos , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos , Morfolinas/farmacologia , Nocodazol/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Ocludina/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais , Junções Íntimas/imunologia , Junções Íntimas/microbiologia , Moduladores de Tubulina/farmacologia , Proteína da Zônula de Oclusão-1/metabolismo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores
18.
Antimicrob Agents Chemother ; 59(8): 5000-2, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25987637

RESUMO

A CMY-2-producing capsular type K2 Klebsiella pneumoniae strain (TVGHKP93) with multidrug resistance was isolated from a recurrent liver abscess in a patient who also carried a CMY-2-producing Escherichia coli strain (TVGHEC01) in the stool. TVGHKP93 retained its high virulence compared with that of the isogenic strain (TVGHKP60) with wild-type resistance from the first liver abscess. Our conjugation experiment showed the successful transfer of the blaCMY-2-carrying plasmid from TVGHEC01 into TVGHKP60. The transconjugant showed both high virulence and the multidrug-resistant phenotype, as did TVGHKP93.


Assuntos
Escherichia coli/genética , Klebsiella pneumoniae/genética , Abscesso Hepático/enzimologia , Abscesso Hepático/genética , Virulência/genética , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Humanos , Infecções por Klebsiella/enzimologia , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Abscesso Hepático/microbiologia , Plasmídeos/genética
19.
Antimicrob Agents Chemother ; 59(5): 2909-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691646

RESUMO

Colistin is one of the antibiotics of last resort for the treatment of carbapenem-resistant Klebsiella pneumoniae infection. This study showed that capsular type K64 (50%) and ST11 (53.9%) are the prevalent capsular and sequence types in the colistin-resistant strains in Taiwan. The interruption of transcripts (38.5%) and amino acid mutation (15.4%) in mgrB are the major mechanisms contributing to colistin resistance. In addition, novel single amino acid changes in MgrB (Stop48Tyr) and PhoQ (Leu26Pro) were observed to contribute to colistin resistance.


Assuntos
Colistina/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Taiwan
20.
Antimicrob Agents Chemother ; 59(2): 1038-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25451047

RESUMO

Klebsiella pneumoniae is an important human pathogen associated with a variety of diseases, and the prevalence of multidrug-resistant K. pneumoniae (MDRKP) is rapidly increasing. Here we determined the capsular types of 85 carbapenem-resistant K. pneumoniae (CRKP) strains by wzc sequencing and investigated the presence of carbapenemases and integrons among CRKP strains. Ten CRKP strains (12%) were positive for carbapenemase (imipenemase, 6/85 strains; K. pneumoniae carbapenemase, 3/85 strains; Verona integron-encoded metallo-ß-lactamase, 1/85 strains). Capsular type K64 accounted for 32 CRKP strains (38%), followed by K62 (13%), K24 (8%), KN2 (7%), and K28 (6%). Sequence types (STs) were determined by multilocus sequence typing (MLST), and the results indicated that ST11, which accounted for 47% of these CRKP strains (40/85 strains), was the major ST. We further isolated a K64-specific capsule depolymerase (K64dep), which could enhance serum and neutrophil killing in vitro and increase survival rates for K64 K. pneumoniae-inoculated mice. The toxicity study demonstrated that mice treated with K64dep showed normal biochemical parameters and no significant histopathological changes of liver, kidney, and spleen, indicating that enzyme treatment did not cause toxicity in mice. Therefore, the findings of capsular type clustering among CRKP strains and effective treatment with capsule depolymerase for MDRKP infections are important for capsule-based vaccine development and therapy.


Assuntos
Antibacterianos/farmacologia , Cápsulas Bacterianas/metabolismo , Carbapenêmicos/farmacologia , Glicosídeo Hidrolases/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Animais , Antibacterianos/efeitos adversos , Cápsulas Bacterianas/efeitos dos fármacos , Carbapenêmicos/efeitos adversos , Eletroforese em Gel de Campo Pulsado , Feminino , Glicosídeo Hidrolases/genética , Humanos , Klebsiella pneumoniae/genética , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA