Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chemphyschem ; 19(12): 1448-1455, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29539184

RESUMO

CuO/CeO2 is a kind of promising catalysts for the water-gas shift (WGS) reaction. Efforts were put in to improve its performance through modification of CeO2 support. In this study, portions of CeO2 prepared by a co-precipitation method were separately annealed at 300 °C in air, under vacuum and with H2 , and were used as supports for the fabrication of CuO/CeO2 catalysts. The physicochemical properties of the catalysts were characterized by X-ray diffraction, N2 -physisorption, inductively coupled plasma, Raman spectroscopy, CO2 temperature-programmed desorption, and H2 temperature-programmed reduction techniques. The relation between catalytic performances and physicochemical properties of the CuO/CeO2 catalysts were discussed. Among the three catalysts, the one with CuO supported on H2 -reduced CeO2 shows the highest catalytic activity, mainly due to strong CuO-CeO2 synergetic interaction and high concentration of Frenkel-type oxygen vacancies. The superior catalytic activities can also be attributed to the Cu0 crystals of small size and the oxygen vacancies in non-stoichiometric CeO2-x .

2.
Cancer Chemother Pharmacol ; 93(3): 237-251, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38040978

RESUMO

PURPOSE: Pancreatic cancer (PC) remains a lethal disease, and gemcitabine resistance is prevalent. However, the biomarkers suggestive of gemcitabine resistance remain unclear. METHODS: Bioinformatic tools identified ribonucleotide reductase catalytic subunit M1 (RRM1) in gemcitabine-related datasets. A cox regression model revealed the predictive value of RRM1 with clinical features. An external clinical cohort confirmed the prognostic value of RRM1. RRM1 expression was validated in gemcitabine-resistant cells in vitro and in orthotopic PC model. CCK8, flow cytometry, transwell migration, and invasion assays were used to explore the effect of RRM1 on gemcitabine-resistant cells. The CIBERSORT algorithm investigated the impact of RRM1 on immune infiltration. RESULTS: The constructed nomogram based on RRM1 effectively predicted prognosis and was further validated. Moreover, patients with higher RRM1 had shorter overall survival. RRM1 expression was significantly higher in PC tissue and gemcitabine-resistant cells in vitro and in vivo. RRM1 knockdown reversed gemcitabine resistance, inhibited migration and invasion. The infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and plasma cells correlated markedly with RRM1 expression, and communication between tumor and immune cells probably depends on NF-κB/mTOR signaling. CONCLUSION: RRM1 may be a potential marker for prognosis and a target marker for gemcitabine resistance in PC.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Prognóstico , Antimetabólitos Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ribonucleosídeo Difosfato Redutase
3.
Transl Res ; 255: 66-76, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36400307

RESUMO

Gemcitabine (GEM) is the first-line medication for pancreatic ductal adenocarcinoma (PDAC). However, over some treatment cycles, GEM sensitivity declines and chemotherapeutic resistance develops, resulting in tumor recurrence and metastasis. Therefore, it is critical to elucidate the mechanism of GEM chemoresistance. And a specific drug that is closely related to the mechanism is urgently required to sensitize GEM. Here, tissue inhibitor of matrix metalloproteinases 1 (TIMP1) and phosphorylated mammalian target of rapamycin (p-mTOR) were found to be substantially elevated in PDAC patients and were associated with worse overall survival. The TIMP1/PI3K/AKT/mTOR pathway was found in GEM-resistant PDAC cells and was revealed to be involved in epithelial-mesenchymal transition (EMT) and apoptosis. Furthermore, arsenic trioxide (ATO), a basic therapeutic drug for acute promyelocytic leukemia, mediated TIMP1 reduction by inducing reactive oxygen species generation and hampered the subsequent PI3K/AKT/mTOR axis. Moreover, the combination of ATO and GEM cooperatively suppressed the TIMP1/PI3K/AKT/mTOR pathway, synergistically inhibited EMT and promoted apoptosis. In vitro and in vivo, ATO combined with GEM has a collaborative anticancer effect, inhibiting cancer cell proliferation, migration, invasion, and suppressing tumor growth both in PDAC parental and GEM-resistant cells. Overall, the TIMP1/PI3K/AKT/mTOR pathway is present in PDAC and linked to GEM resistance. ATO suppresses the axis to sensitize GEM and reverse GEM resistance, suggesting a promising treatment for the disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/metabolismo , Trióxido de Arsênio/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/patologia , Serina-Treonina Quinases TOR/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Neoplasias Pancreáticas
4.
Cancer Lett ; 546: 215863, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961511

RESUMO

Perineural invasion (PNI) occurs in most pancreatic ductal adenocarcinomas (PDACs). The relationship between cancer cells and peripheral nerves, however, is unknown. Therefore, we focused on the cooperation of PDAC cells and peripheral nerve astrocytes, Schwann cells (SCs), in PNI. The mutual tumor-supportive secretory cytokines between SCs (sNF96.2) and PDAC cells (PANC-1, BxPC-3) were screened by human cytokine arrays and verified. The prognostic value of selected cytokines and SC-associated markers was confirmed in PDAC patients. TIMP1 and CCL7 were found to form a paracrine feedback loop between PDAC cells and SCs. PDAC cell-derived TIMP1 promotes SCs proliferation and migration via CD63/PI3K/AKT signaling. CCL7 secreted from SCs enhances PDAC cell migration, invasion and expression of TIMP1 via CCR2/STAT3. PDAC cell-SC cooperation in PNI was blocked when TIMP1 knockdown in vitro and in vivo. Finally, TIMP1, CCL7 and SC-associated markers were correlated with PNI and prognosis in PDAC patients. In conclusion, SCs collaborate with PDAC cells through the TIMP1-CCL7 paracrine feedback loop to promote PNI. TIMP1 knockdown in PDAC cells suppresses PNI. Strategies to disrupt the TIMP1-CCL7 feedback loop might be developed to inhibit PNI in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Movimento Celular , Citocinas , Humanos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases , Células de Schwann , Inibidor Tecidual de Metaloproteinase-1 , Neoplasias Pancreáticas
5.
Inorg Chem ; 48(5): 1819-25, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19235945

RESUMO

A network-structured SnO(2)/ZnO heterojunction nanocatalyst with high photocatalytic activity was successfully synthesized through a simple two-step solvothermal method. The as-synthesized samples are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, N(2) physical adsorption, and UV-vis spectroscopy. The results show that the SnO(2)/ZnO sample with a molar ratio of Sn/Zn = 1 is a mesoporous composite material composed of SnO(2) and ZnO. The photocatalytic activity of SnO(2)/ZnO heterojunction nanocatalysts for the degradation of methyl orange is much higher than those of solvothermally synthesized SnO(2) and ZnO samples, which can be attributed to the SnO(2)-ZnO heterojunction, the pore structure, and higher Brunauer-Emmett-Teller (BET) surface area of the sample: (1) The SnO(2)-ZnO heterojunction improves the separation of photogenerated electron-hole pairs due to the potential energy differences between SnO(2) and ZnO, thus enhancing the photocatalytic activity. (2) The SnO(2)/ZnO sample might possess more surface reaction sites and adsorb and transport more dye molecules due to the higher BET surface area and many pore channels, also leading to higher photocatalytic activity.


Assuntos
Nanoestruturas/química , Processos Fotoquímicos , Compostos de Estanho/química , Óxido de Zinco/química , Catálise , Espectrofotometria Ultravioleta , Propriedades de Superfície , Difração de Raios X
6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(8): 2166-70, 2009 Aug.
Artigo em Zh | MEDLINE | ID: mdl-19839331

RESUMO

In the present paper, ordered mesoporous silica (KIT-6) as support, nanosized TiO2 into KIT-6 was synthesized by titanium tetraisopropoxide hydrolysis. Then silver was loaded by deposition-precipitation method. Ag-TiO2/KIT-6 composite nanosized photocatalyst was firstly synthesized and a series of correlated catalysts were synthesized by the same preparation method. Methyl orange is presently adopted as a representative organic pollutant to evaluate the photocatalytic performance of the as-synthesized catalysts. The order of photocatalytic activity of the as-synthesized samples was found as Ag-TiO2/KIT-6 > Ag/TiO2 > TiO2/KIT-6 > TiO2 > Ag/KIT-6. Detailed characterizations were conducted by techniques including XRD, N2 physical adsorption, XPS, UV-Vis DRS and TEM. It was found that the Ag-TiO2 /KIT-6 sample shows the highest photocatalytic activity, which should be attributed to the Ag-TiO2 heterojunction structure and higher BET surface area of the Ag-TiO2/KIT-6 sample. Ag-TiO2 heterojunction improves the separation of photogenerated electron-hole pairs, thus enhancing the photocatalytic activity; Ag-TiO2/KIT-6 sample possesses high BET surface area, which facilitates adsorption and transportation of dye molecules, also leading to higher photocatalytic activity.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(4): 926-9, 2008 Apr.
Artigo em Zh | MEDLINE | ID: mdl-18619331

RESUMO

For Au-ceria catalysts prepared by deposition-precipitation method, the catalytic performance of water gas shift reaction was studied with different La loadings. In the complete doping range, ceria retains with its cubic fluorite structures. XRD, HRTEM and UV-Vis-DRS, studies showed that La doping can improve the activity of Au-ceria catalyst by stabilizing ceria and modifying its morphology. In addition, the test of catalyst stability evaluation also proved, that a better stability performance of Au-ceria catalyst can be realized by appropriate La doping. The Au/CL5.0 sample with 5 at % La doping showed the best performance in WGS reaction.

8.
Dalton Trans ; 47(42): 14938-14944, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30207346

RESUMO

Hydrotalcite-like compounds (HTlcs) are promising supports or catalyst precursors for heterogeneous catalysts. Herein, MgAl-HTlcs-supported Pd catalyst was fabricated, and two Pd catalysts supported on Mg(OH)2 and Al(OH)3 were prepared for comparison. The presence of hydroxyl groups (OH-) in the support is important for obtaining uniform Pd nanoparticles with small sizes. We found that Pdn+ species are more active than Pd0 in low temperature CO oxidation due to their lower barrier in CO activation. The Pd/MgAl-HT catalyst shows the most stable Pdn+ at a temperature lower than 90 °C, leading to the highest catalytic activity towards CO oxidation. Pdn+ in the Pd/Al(OH)3 catalyst is more stable than that in Pd/Mg(OH)2 at low temperature, which is ascribed to its smaller temperature hysteresis (Thysteresis) between the oxidation and re-reduction cycles. The effect of hydroxyl groups on stabilizing Pd species is related to the stability of Pd catalyst in CO oxidation reaction.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(4): 781-4, 2007 Apr.
Artigo em Zh | MEDLINE | ID: mdl-17608198

RESUMO

A series of Au/alpha-Fe2O3 catalysts promoted with ZrO2 and Nb2O5 were prepared by parallel co-precipitation method. Detailed characterizations were conducted by techniques including UV-Vis-DRS, XPS, TEM and XRF. Results indicated that the enrichment of Au, ZrO2 and Nb2O5 on the surface induced by the strong interaction between ZrO2 and Nb2O5 kept the nanoparticles apart, delaying sintering. Performance tests carried out in the reformed methanol steam showed that its CO conversion almost reached the maximum value of 99% at 200 degrees C, and maintained a better stability compared with unmodified samples within 50 h on-stream. All these indicated that ZrO2 and Nb2O5 promoters efficiently improved the performance of the Au/alpha-Fe2O3 catalysts.

10.
Dalton Trans ; 40(37): 9566-70, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21847472

RESUMO

In this work, we study the enhancement of Raman signals and photocatalytic activity of Ag/ZnO heterojunctions with an Ag content of 1 at.%, which were synthesized by photochemical deposition of Ag nanoparticles onto pre-synthesized ZnO nanorods. A strong interaction between Ag and ZnO nanocrystals were evidenced by XPS and UV-vis spectroscopy. The binding energy of Ag nanoparticles shifts toward lower energy compared to that of pure Ag nanoparticles, revealing that electrons transfer from Ag to the ZnO nanocrystals. The red shift of the plasmon absorption peak of Ag nanoparticles in Ag/ZnO heterojunctions further confirms the strong interaction between the two components. This strong interaction, arising from the coupling between Ag and ZnO nanocrystals, is responsible for the enhancement of Raman signals and photocatalytic activity of the Ag/ZnO heterojunctions.

11.
Inorg Chem ; 46(16): 6675-82, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17622132

RESUMO

Low-dimensional ZnO nanocrystals with controlled size, aspect ratio, and oxygen defects (e.g., type and concentration) are successfully prepared through simple solvothermal and thermal treatment methods. The structure of the as-synthesized samples is characterized by XRD, N2 physical adsorption, TEM, and IR and XPS spectra. The results show that the aspect ratio and size of the as-synthesized ZnO nanocrystals increase with increasing [OH-]/[Zn2+]; the morphology evolves from nanorod to nanoparticle with an increase in the annealing temperature; the BET surface areas of the corresponding samples decrease during these processes, respectively; and different oxygen defects, which are likely to be oxygen vacancy (Vo**) and interstitial oxygen (Oi''), are formed in our experiments accordingly. With evolution of the structure, IR absorption bands and visible photoluminescence emission peaks of the synthesized ZnO nanocrystals shift and split, which is ascribed to the change of oxygen defects. In addition, it is found that the photocatalytic activity of the synthesized ZnO nanocrystals is mainly dependent on the type and concentration of oxygen defects. The relationship of structure-property and the possible photocatalytic mechanism are discussed in detail.

12.
Inorg Chem ; 46(17): 6980-6, 2007 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-17658874

RESUMO

A high yield of the dimer-type heterostructure of Ag/ZnO nanocrystals with different Ag contents is successfully prepared through a simple solvothermal method in the absence of surfactants. The samples are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and IR spectroscopy. The results show that all samples are composed of metallic Ag and ZnO; Ag nanoparticles locate on the surface of ZnO nanorods; the binding energy of Ag 3d(5/2) for the Ag/ZnO sample with a Ag content of 5.0 atom % shifts remarkably to the lower binding energy compared with the corresponding value of pure metallic Ag because of the interaction between Ag and ZnO nanocrystals; the concentration of oxygen vacancy for the as-synthesized samples varies with the increasing Ag content, and the Ag/ZnO sample with a Ag content of 5.0 atom % has the largest density of oxygen vacancy. In addition, the relationship between their structure and photocatalytic property is investigated in detail. It is found that the photocatalytic property is closely related to its structure, such as heterostructure, oxygen defect, and crystallinity. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of ZnO nanorods promotes the separation of photogenerated electron-hole pairs and thus enhances the photocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA