Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 130(18): 1589-600, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25165091

RESUMO

BACKGROUND: Common causative agents in the development of inflammatory cardiomyopathy include cardiotropic viruses such as coxsackievirus B3 (CVB3). Here, we investigated the role of the ubiquitin-like modifier interferon-stimulated gene of 15 kDa (ISG15) in the pathogenesis of viral cardiomyopathy. METHODS AND RESULTS: In CVB3-infected mice, the absence of protein modification with ISG15 was accompanied by a profound exacerbation of myocarditis and by a significant increase in mortality and heart failure. We found that ISG15 in cardiomyocytes contributed significantly to the suppression of viral replication. In the absence of an intact ISG15 system, virus titers were markedly elevated by postinfection day 8, and viral RNA persisted in ISG15(-/-) mice at postinfection day 28. Ablation of the ISG15 protein modification system in CVB3 infection predisposed mice to long-term disease with deposition of collagen fibers, all leading to inflammatory cardiomyopathy. We found that ISG15 acts as part of the intrinsic immunity in cardiomyocytes and detected no significant effects of ISG15 modification on the cellular immune response. ISG15 modification of CVB3 2A protease counterbalanced CVB3-induced cleavage of the host cell eukaryotic initiation factor of translation eIF4G in cardiomyocytes, thereby counterbalancing the shutoff of host cell translation in CVB3 infection. We demonstrate that ISG15 suppressed infectious virus yield in human cardiac myocytes and the induction of ISG15 in patients with viral cardiomyopathy. CONCLUSIONS: The ISG15 conjugation system represents a critical innate response mechanism in cardiomyocytes to fight the battle against invading pathogens, limiting inflammatory cardiomyopathy, heart failure, and death. Interference with the ISG15 system might be a novel therapeutic approach in viral cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/virologia , Infecções por Coxsackievirus/complicações , Citocinas/genética , Enterovirus Humano B/imunologia , Insuficiência Cardíaca/virologia , Adulto , Animais , Biópsia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/imunologia , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/imunologia , Cisteína Endopeptidases/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/imunologia , Humanos , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Ubiquitinas/genética , Ubiquitinas/imunologia , Ubiquitinas/metabolismo , Proteínas Virais/imunologia , Replicação Viral
2.
DNA Repair (Amst) ; 7(8): 1192-201, 2008 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-18468965

RESUMO

Human SNM1B/Apollo is involved in the cellular response to DNA-damage, however, its precise role is unknown. Recent reports have implicated hSNM1B in the protection of telomeres. We have found hSNM1B to interact with TRF2, a protein which functions in telomere protection and in an early response to ionizing radiation. Here we show that endogenous hSNM1B forms foci which colocalize at telomeres with TRF1 and TRF2. However, we observed that additional hSNM1B foci could be induced upon exposure to ionizing radiation (IR). In live-cell-imaging experiments, hSNM1B localized to photo-induced double-strand breaks (DSBs) within 10s post-induction. Further supporting a role for hSNM1B in the early stages of the cellular response to DSBs, we observed that autophosphorylation of ATM, as well as the phosphorylation of ATM target proteins in response to IR, was attenuated in cells depleted of hSNM1B. These observations suggest an important role for hSNM1B in the response to IR damage, a role that may be, in part, upstream of the central player in maintenance of genome integrity, ATM.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Linhagem Celular , Enzimas Reparadoras do DNA/fisiologia , Exodesoxirribonucleases , Imunofluorescência , Humanos , Proteínas Nucleares/fisiologia , Fosforilação , Ligação Proteica , RNA Interferente Pequeno
3.
J Org Chem ; 72(6): 2236-9, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17319725

RESUMO

Indazolium-3-amidates (X-ray analysis), readily available on trapping the N-heterocyclic carbene indazol-3-ylidene with isocyanates, underwent [3+2]-cycloadditions with activated triple bonds to spiro[indazole-3,3'-pyrroles]. A combination of NMR techniques such as heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond correlation (HMBC), nuclear Overhauser enhancement spectroscopy (NOESY), and 1H/15N correlations were applied to elucidate the structures of the cycloadducts.

4.
Org Biomol Chem ; 4(16): 3056-66, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16886072

RESUMO

Reaction of 6-chlorouracil with 4-(dimethylamino)pyridine, 4-methylpyridine, and pyridin-4-yl-morpholine yielded pyridinium-substituted uracils as chlorides which were converted into pyridinium uracilates by deprotonation. These heterocyclic mesomeric betaines are cross-conjugated and thus possess separate cationic (pyridinium) and anionic (uracilate) moieties. Calculations and X-ray single crystal analyses were performed in order to characterize these systems and to compare the salts with the betaines. (1)H NMR experiments in D(2)O proved pi-interactions between the uracilyl betaines and adenine, adenosine, as well as adeninium. No pi-stacking interactions were detected between the betaines and guanosine. The acidic N8-H group of the uracil pyridinium salts caused acid-base reactions which were observed in parallel to pi-stacking interactions. Self-complementarity of the modified uracils was detected by (1)H NMR experiments in DMSO-d(6) and electrospray ionisation mass spectrometry (ESIMS). Ab initio calculations predicted base-pairings of the modified uracils with adeninium, cytosine, and guanine. Several geometries of hydrogen-bonded associates were calculated. Hoogsteen pairings between the uracil-4-(dimethylamino)pyridinium salt and adeninium, as well as associates between the corresponding betaine plus cytosine, and the betaine plus guanine were calculated, and the most stable conformations were determined. In the ESI mass spectra, prominent peaks of associates between the modified uracils and adeninium, cytosine, cytidine, guanosine and d(CpGp) were detected.


Assuntos
Pareamento de Bases , Betaína/química , Nucleotídeos/química , Compostos de Piridínio/química , Uracila/química , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA