Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 16(4): e1007446, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320389

RESUMO

Mosquitoes are important vectors for pathogens that infect humans and other vertebrate animals. Some aspects of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We developed a new framework for individual-based simulation models called MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex resource landscapes generated by spatial point processes. We also developed an ordinary differential equation model which is the Kolmogorov forward equations for models developed in MBITES under a specific set of simplifying assumptions. While mosquito infection and pathogen development are one possible part of a mosquito's state, that is not our main focus. Using extensive simulation using some models developed in MBITES, we show that vectorial capacity can be understood as an emergent property of simple behavioral algorithms interacting with complex resource landscapes, and that relative density or sparsity of resources and the need to search can have profound consequences for mosquito populations' capacity to transmit pathogens.


Assuntos
Comportamento Animal , Culicidae/fisiologia , Malária/transmissão , Mosquitos Vetores , Algoritmos , Animais , Biologia Computacional , Simulação por Computador , Vetores de Doenças , Ecologia , Ecossistema , Comportamento Alimentar , Feminino , Humanos , Masculino , Modelos Teóricos , Método de Monte Carlo , Oviposição , Probabilidade
2.
Malar J ; 20(1): 413, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670558

RESUMO

BACKGROUND: In cluster randomized trials (CRTs) or stepped wedge cluster randomized trials (SWCRTs) of malaria interventions, mosquito movement leads to contamination between trial arms unless buffer zones separate the clusters. Contamination can be accounted for in the analysis, yielding an estimate of the contamination range, the distance over which contamination measurably biases the effectiveness. METHODS: A previously described analysis for CRTs is extended to SWCRTs and estimates of effectiveness are provided as a function of intervention coverage. The methods are applied to two SWCRTs of malaria interventions, the SolarMal trial on the impact of mass trapping of mosquitoes with odor-baited traps and the AvecNet trial on the effect of adding pyriproxyfen to long-lasting insecticidal nets. RESULTS: For the SolarMal trial, the contamination range was estimated to be 146 m ([Formula: see text] credible interval [Formula: see text] km), together with a [Formula: see text] ([Formula: see text] credible interval [Formula: see text]) reduction of Plasmodium infection, compared to the [Formula: see text] reduction estimated without accounting for contamination. The estimated effectiveness had an approximately linear relationship with coverage. For the AvecNet trial, estimated contamination effects were minimal, with insufficient data from the cluster boundary regions to estimate the effectiveness as a function of coverage. CONCLUSIONS: The contamination range in these trials of malaria interventions is much less than the distances Anopheles mosquitoes can fly. An appropriate analysis makes buffer zones unnecessary, enabling the design of more cost-efficient trials. Estimation of the contamination range requires information from the cluster boundary regions and trials should be designed to collect this.


Assuntos
Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , Análise por Conglomerados , Características da Família , Humanos , Incidência , Mosquiteiros Tratados com Inseticida , Inseticidas/administração & dosagem , Malária/epidemiologia , Malária/transmissão , Mosquitos Vetores/parasitologia , Piridinas/administração & dosagem , Análise Espacial
3.
Malar J ; 20(1): 273, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158066

RESUMO

BACKGROUND: The efficacy of insecticide-treated nets (ITNs) containing the insect growth regulator pyriproxyfen (PPF) and pyrethroid insecticides (PPF-ITNs) is being assessed in clinical trials to determine whether they provide greater protection from malaria than standard pyrethroid-treated ITNs in areas where mosquitoes are resistant to pyrethroids. Understanding the entomological mode of action of this new ITN class will aide interpretation of the results from these trials. METHODS: Anopheles gambiae sensu lato (s.l.) mosquitoes from a susceptible laboratory strain were exposed to PPF-treated netting 24 h, 6 h, and immediately prior to, or 24 h post blood feeding, and the impact on fecundity, fertility and longevity recorded. Pyrethroid-resistant populations were exposed to nets containing permethrin and PPF (PPF-ITNs) in cone bioassays and daily mortality recorded. Mosquitoes were also collected from inside houses pre- and post-distribution of PPF-ITNs in a clinical trial conduced in Burkina Faso; female An. gambiae s.l. were then assessed for fecundity and fertility. RESULTS: PPF exposure reduced the median adult lifespan of insecticide-susceptible mosquitoes by 4 to 5 days in all exposure times (p < 0.05) other than 6 h pre-blood meal and resulted in almost complete lifelong sterilization. The longevity of pyrethroid-resistant mosquitoes was also reduced by at least 5 days after exposure to PPF-ITNs compared to untreated nets, but was unaffected by exposure to standard pyrethroid only ITNs. A total of 386 blood-fed or gravid An. gambiae s.l. females were collected from five villages between 1 and 12 months before distribution of PPF-ITNs. Of these mosquitoes, 75% laid eggs and the remaining 25% appeared to have normal ovaries upon dissection. In contrast, only 8.6% of the 631 blood-fed or gravid An. gambiae s.l. collected post PPF-ITN distribution successfully oviposited; 276 (43.7%) did not oviposit but had apparently normal ovaries upon dissection, and 301 (47.7%) did not oviposit and had abnormal eggs upon dissection. Egg numbers were also significantly lower (average of 138/female prior distribution vs 85 post distribution, p < 0.05). CONCLUSION: Exposure to a mixture of PPF and pyrethroids on netting shortens the lifespan of mosquitoes and reduces reproductive output. Sterilization of vectors lasted at least one year under operational conditions. These findings suggest a longer effective lifespan of PPF-pyrethroid nets than reported previously.


Assuntos
Anopheles , Aptidão Genética/efeitos dos fármacos , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Inseticidas , Controle de Mosquitos , Piridinas , Animais , Burkina Faso , Feminino , Longevidade/efeitos dos fármacos , Piretrinas/farmacologia , Reprodução/efeitos dos fármacos
4.
Malar J ; 20(1): 362, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488770

RESUMO

BACKGROUND: Malaria in pregnancy remains a public health problem in sub-Saharan Africa. Identifying risk factors for malaria in pregnancy could assist in developing interventions to reduce the risk of malaria in Burkina Faso and other countries in the region. METHODS: Two cross-sectional surveys were carried out to measure Plasmodium falciparum infection using microscopy in pregnant women in Saponé Health District, central Burkina Faso. Data were collected on individual, household and environmental variables and their association with P. falciparum infection assessed using multivariable analysis. RESULTS: A total of 356 pregnant women were enrolled in the surveys, 174 during the dry season and 182 during the wet season. The mean number of doses of sulfadoxine-pyrimethamine for Intermittent Preventive Treatment in pregnancy (IPTp-SP) was 0.4 doses during the first trimester, 1.1 doses at the second and 2.3 doses at the third. Overall prevalence of P. falciparum infection by microscopy was 15.7%; 17.8% in the dry season and 13.7% in the wet season. 88.2% of pregnant women reported sleeping under an insecticide-treated net (ITN) on the previous night. The odds of P. falciparum infection was 65% lower in women who reported using an ITN compared to those that did not use an ITN (Odds ratio, OR = 0.35, 95% CI 0.14-0.86, p = 0.02). IPTp-SP was also associated with reduced P. falciparum infection, with each additional dose of IPTp-SP reducing the odds of infection by 44% (OR = 0.56, 95% CI 0.39-0.79, p = 0.001). Literate women had a 2.54 times higher odds of P. falciparum infection compared to illiterate women (95% CI 1.31-4.91, p = 0.006). CONCLUSIONS: The prevalence of P. falciparum infection among pregnant women remains high in Burkina Faso, although use of IPTp-SP and ITNs were found to reduce the odds of infection. Despite this, compliance with IPTp-SP remains far from that recommended by the National Malaria Control Programme and World Health Organization. Behaviour change communication should be strengthened to encourage compliance with protective malaria control tools during pregnancy.


Assuntos
Antimaláricos/administração & dosagem , Malária Falciparum/epidemiologia , Complicações Parasitárias na Gravidez/epidemiologia , Gestantes , Pirimetamina/administração & dosagem , Sulfadoxina/administração & dosagem , Adolescente , Adulto , Burkina Faso/epidemiologia , Estudos Transversais , Combinação de Medicamentos , Feminino , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Prevalência , Fatores de Risco , Adulto Jovem
5.
Malar J ; 20(1): 138, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33678166

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. METHODS: From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). RESULTS: In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18-0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49-0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002-0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005-0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07-0.33, p < 0.001). CONCLUSIONS: LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.


Assuntos
Anopheles/fisiologia , Malária/prevenção & controle , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/fisiologia , Animais , Biodiversidade , Doenças Endêmicas/prevenção & controle , Geografia , Densidade Demográfica , Estações do Ano , Simpatria/fisiologia , Uganda
6.
Malar J ; 20(1): 397, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34629053

RESUMO

BACKGROUND: In rural Burkina Faso, the primary malaria vector Anopheles gambiae sensu lato (s.l.) primarily feeds indoors at night. Identification of factors which influence mosquito house entry could lead to development of novel malaria vector control interventions. A study was therefore carried out to identify risk factors associated with house entry of An. gambiae s.l. in south-west Burkina Faso, an area of high insecticide resistance. METHODS: Mosquitoes were sampled monthly during the malaria transmission season using CDC light traps in 252 houses from 10 villages, each house sleeping at least one child aged five to 15 years old. Potential risk factors for house entry of An. gambiae s.l. were measured, including socio-economic status, caregiver's education and occupation, number of people sleeping in the same part of the house as the child, use of anti-mosquito measures, house construction and fittings, proximity of anopheline aquatic habitats and presence of animals near the house. Mosquito counts were compared using a generalized linear mixed-effect model with negative binomial and log link function, adjusting for repeated collections. RESULTS: 20,929 mosquitoes were caught, of which 16,270 (77.7%) were An. gambiae s.l. Of the 6691 An. gambiae s.l. identified to species, 4101 (61.3%) were An. gambiae sensu stricto and 2590 (38.7%) Anopheles coluzzii. Having a metal-roof on the child's sleeping space (IRR = 0.55, 95% CI 0.32-0.95, p = 0.03) was associated with fewer malaria vectors inside the home. CONCLUSION: This study demonstrated that the rate of An. gambiae s.l. was 45% lower in sleeping spaces with a metal roof, compared to those with thatch roofs. Improvements in house construction, including installation of metal roofs, should be considered in endemic areas of Africa to reduce the burden of malaria.


Assuntos
Anopheles/fisiologia , Insetos Vetores/fisiologia , Resistência a Inseticidas , Malária/transmissão , Adolescente , Animais , Anopheles/parasitologia , Burkina Faso/epidemiologia , Cuidadores/educação , Criança , Pré-Escolar , Estudos de Coortes , Escolaridade , Feminino , Habitação , Humanos , Insetos Vetores/parasitologia , Malária/epidemiologia , Malária/etiologia , Malária/prevenção & controle , Ocupações , Fatores de Risco , População Rural , Classe Social
7.
Malar J ; 19(1): 248, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660475

RESUMO

BACKGROUND: Recording behaviours that have the potential to impact health can be doubly challenging if the behaviour takes place in private spaces that cannot be observed directly, and where respondents answer what they think the recorder may want to hear. Sleeping under a long-lasting insecticidal net (LLIN) is an important intervention for malaria prevention, yet it is difficult to gauge the extent to which coverage (how many nets are in the community) differs from usage (how many people actually sleep under a net). List randomization, a novel method which partially obscures respondents' answers to sensitive questions, was employed to estimate LLIN usage in The Gambia. METHODS: 802 heads-of-household from 15 villages were recruited into a randomized controlled trial assessing the effect of a housing intervention on malaria. These houses were randomly assigned to a housing intervention versus control, with stratification by village so as to ensure balance between arms. From these, 125 households (63 intervention, 52 control) were randomly selected for participation in the list randomization experiment, along with 68 households from the same villages but which were not part of the housing improvement study, resulting in a total of 196 households for the list randomization experiment. Approximately half (n = 97) of the 196 study participants were randomly assigned to the control group and received a four-question list about non-sensitive behaviours; the intervention group (n = 99) received the same list, with the addition of one question on a sensitive behaviour: whether or not they had used a bed net the previous night. Participants were read the list of questions and then said how many of the statements were true. Bed net usage was estimated by calculating the difference in means between the number of affirmative responses between the two groups. RESULTS: The mean number of affirmative responses in the control group was 2.60 of four statements (95% confidence interval, 95% CI 2.50-2.70), compared with 3.68 (95% CI 3.59-3.78) in the intervention group. Such difference (1.08; 95% CI 94.9-100%) suggests near universal bed net usage. CONCLUSIONS: Bed net usage by household heads in these rural villages was found to be high. Though not entirely unexpected given other studies' estimates of high bed net usage in the area, the list randomization method should be further validated in an area with lower coverage.


Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Controle de Mosquitos/estatística & dados numéricos , Gâmbia , Malária/prevenção & controle , População Rural/estatística & dados numéricos
8.
Malar J ; 19(1): 371, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066799

RESUMO

BACKGROUND: Progress in controlling malaria has stalled in recent years. Today the malaria burden is increasingly concentrated in a few countries, including Burkina Faso, where malaria is not declining. A cohort study was conducted to identify risk factors for malaria infection in children in southwest Burkina Faso, an area with high insecticide-treated net (ITN) coverage and insecticide-resistant vectors. METHODS: Incidence of Plasmodium falciparum infection was measured in 252 children aged 5 to 15 years, using active and passive detection, during the 2017 transmission season, following clearance of infection. Demographic, socio-economic, environmental, and entomological risk factors, including use of ITNs and insecticide resistance were monitored. RESULTS: During the six-month follow-up period, the overall incidence of P. falciparum infection was 2.78 episodes per child (95% CI = 2.66-2.91) by microscopy, and 3.11 (95% CI = 2.95-3.28) by polymerase chain reaction (PCR). The entomological inoculation rate (EIR) was 80.4 infective bites per child over the six-month malaria transmission season. At baseline, 80.6% of children were reported as sleeping under an ITN the previous night, although at the last survey, 23.3% of nets were in poor condition and considered no longer protective. No association was found between the rate of P. falciparum infection and either EIR (incidence rate ratio (IRR): 1.00, 95% CI: 1.00-1.00, p = 0.08) or mortality in WHO tube tests when vectors were exposed to 0.05% deltamethrin (IRR: 1.05, 95% CI: 0.73-1.50, p = 0.79). Travel history (IRR: 1.52, 95% CI: 1.45-1.59, p < 0.001) and higher socio-economic status were associated with an increased risk of P. falciparum infection (IRR: 1.05, 95% CI: 1.00-1.11, p = 0.04). CONCLUSIONS: Incidence of P. falciparum infection remains overwhelmingly high in the study area. The study findings suggest that because of the exceptionally high levels of malaria transmission in the study area, malaria elimination cannot be achieved solely by mass deployment of ITNs and additional control measures are needed.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária Falciparum/epidemiologia , Mosquitos Vetores/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Fatores Socioeconômicos , Adolescente , Animais , Burkina Faso/epidemiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Malária Falciparum/parasitologia , Fatores de Risco
9.
BMC Infect Dis ; 19(1): 800, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510931

RESUMO

BACKGROUND: Larviciding is an effective supplementary tool for malaria vector control, but the identification and accessibility of aquatic habitats impedes application. Dissemination of the insect growth regulator, pyriproxyfen (PPF), by gravid Anopheles might constitute a novel application strategy. This study aimed to explore the feasibility of using an attractive bait-station to contaminate gravid Anopheles gambiae sensu stricto with PPF and subsequently transfer PPF to larval habitats. METHODS: A bait-station was developed comprising of an artificial pond containing water treated with 20 ppm cedrol, an oviposition attractant, and a netting-cover treated with PPF. Three identical semi-field cages were used to assess the potential of gravid Anopheles to transfer PPF from the bait-station to ponds. Gravid females were released in two semi-field cages, one with PPF on its bait-station (test) and one without PPF (control). No mosquitoes were released in the third cage with a PPF-treated station (control). Transfer of PPF to open ponds was assessed by monitoring emergence of late instar insectary-reared larvae introduced into the ponds. The amount of PPF carried by a mosquito and transferred to water was quantified using liquid chromatography-mass spectrometry. RESULTS: In the controls, 86% (95% CI 81-89%) of larvae introduced into open ponds developed into adults, indicating that wind did not distribute PPF in absence of mosquitoes. Emergence inhibition was observed in the test cage but was dependent on the distance between pond and bait-station. Only 25% (95% CI 22-29%) of larvae emerged as adults from ponds 4 m from the bait-station, but 92% (95% CI 89-94%) emerged from ponds 10 m away. Each mosquito was contaminated on average with 112 µg (95% CI 93-123 µg) PPF resulting in the transfer of 230 ng/L (95% CI 180-290 ng/L) PPF to 100 ml volumes of water. CONCLUSIONS: The bait-stations successfully attracted gravid females which were subsequently dusted with effective levels of PPF. However, in this study design, attraction and dissemination was limited to short distances. To make this approach feasible for malaria vector control, stronger attractants that lure gravid females from longer distances, in landscapes with many water bodies, and better PPF delivery systems are needed.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/toxicidade , Controle de Mosquitos/métodos , Piridinas/toxicidade , Animais , Anopheles/crescimento & desenvolvimento , Anopheles/fisiologia , Feminino , Larva/efeitos dos fármacos , Oviposição , Sesquiterpenos Policíclicos , Lagoas , Terpenos/farmacologia
10.
Malar J ; 17(1): 227, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29879981

RESUMO

Unfortunately, the original article [1] contained an error mistakenly carried forward by the Production department handling this article whereby some figures and their captions were interchanged. The correct figures (Figs. 1, 2, 3, 4, 5) and captions are presented in this erratum. The original article has also been updated to reflect this correction.

11.
Malar J ; 17(1): 205, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776361

RESUMO

BACKGROUND: Insecticide resistance threatens malaria control in sub-Saharan Africa. Knockdown resistance to pyrethroids and organochlorines in Anopheles gambiae sensu lato (s.l.) is commonly caused by mutations in the gene encoding a voltage-gated sodium channel which is the target site for the insecticide. The study aimed to examine risk factors for knockdown resistance in An. gambiae s.l. and its relationship with malaria infection in children in rural Gambia. Point mutations at the Vgsc-1014 locus, were measured in An. gambiae s.l. during a 2-year trial. Cross-sectional surveys were conducted at the end of the transmission season to measure malaria infection in children aged 6 months-14 years. RESULTS: Whilst few Anopheles arabiensis and Anopheles coluzzii had Vgsc-1014 mutations, the proportion of An. gambiae sensu stricto (s.s.) mosquitoes homozygous for the Vgsc-1014F mutation increased from 64.8 to 90.9% during the study. The Vgsc-1014S or 1014F mutation was 80% higher in 2011 compared to 2010, and 27% higher in the villages with indoor residual spraying compared to those without. An increase in the proportion of An. gambiae s.l. mosquitoes with homozygous Vgsc-1014F mutations and an increase in the proportion of An. gambiae s.s. in a cluster were each associated with increased childhood malaria infection. Homozygous Vgsc-1014F mutations were, however, most common in An. gambiae s.s. and almost reached saturation during the study meaning that the two variables were colinear. CONCLUSIONS: As a result of colinearity between homozygous Vgsc-1014F mutations and An. gambiae s.s., it was not possible to determine whether insecticide resistance or species composition increased the risk of childhood malaria infection.


Assuntos
Anopheles/efeitos dos fármacos , Proteínas de Insetos/genética , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Malária/epidemiologia , Adolescente , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Gâmbia/epidemiologia , Variação Genética , Humanos , Lactente , Proteínas de Insetos/metabolismo , Malária/parasitologia , Masculino , Prevalência , Especificidade da Espécie
13.
Malar J ; 14: 119, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25885703

RESUMO

BACKGROUND: New strategies are needed to manage malaria vector populations that resist insecticides and bite outdoors. This study describes a breakthrough in developing 'attract and kill' strategies targeting gravid females by identifying and evaluating an oviposition attractant for Anopheles gambiae s.l. METHODS: Previously, the authors found that gravid An. gambiae s.s. females were two times more likely to lay eggs in lake water infused for six days with soil from a natural oviposition site in western Kenya compared to lake water alone or to the same but autoclaved infusion. Here, the volatile chemicals released from these substrates were analysed with a gas-chromatograph coupled to a mass-spectrometer (GC-MS). Furthermore, the behavioural responses of gravid females to one of the compounds identified were evaluated in dual choice egg-count bioassays, in dual-choice semi-field experiments with odour-baited traps and in field bioassays. RESULTS: One of the soil infusion volatiles was readily identified as the sesquiterpene alcohol cedrol. Its widespread presence in natural aquatic habitats in the study area was confirmed by analysing the chemical headspace of 116 water samples collected from different aquatic sites in the field and was therefore selected for evaluation in oviposition bioassays. Twice as many gravid females were attracted to cedrol-treated water than to water alone in two choice cage bioassays (odds ratio (OR) 1.84; 95% confidence interval (CI) 1.16-2.91) and in experiments conducted in large-screened cages with free-flying mosquitoes (OR 1.92; 95% CI 1.63-2.27). When tested in the field, wild malaria vector females were three times more likely to be collected in the traps baited with cedrol than in the traps containing water alone (OR 3.3; 95% CI 1.4-7.9). CONCLUSION: Cedrol is the first compound confirmed as an oviposition attractant for gravid An. gambiae s.l. This finding paves the way for developing new 'attract and kill strategies' for malaria vector control.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/fisiologia , Oviposição/efeitos dos fármacos , Feromônios/isolamento & purificação , Terpenos/isolamento & purificação , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Quênia , Feromônios/química , Feromônios/metabolismo , Sesquiterpenos Policíclicos , Terpenos/química , Terpenos/metabolismo
14.
Malar J ; 13: 133, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24693951

RESUMO

BACKGROUND: The non-random distribution of anopheline larvae in natural habitats suggests that gravid females discriminate between habitats of different quality. Whilst physical and chemical cues used by Culex and Aedes vector mosquitoes for selecting an oviposition site have been extensively studied, those for Anopheles remain poorly explored. Here the habitat selection by Anopheles gambiae sensu lato (s.l.), the principal African malaria vector, was investigated when presented with a choice of two infusions made from rabbit food pellets, or soil. METHODS: Natural colonization and larval survival was evaluated in artificial ponds filled randomly with either infusion. Dual-choice, egg-count bioassays evaluated the responses of caged gravid females to (1) two- to six-day old infusions versus lake water; (2) autoclaved versus non-autoclaved soil infusions; and assessed (3) the olfactory memory of gravid females conditioned in pellet infusion as larvae. RESULTS: Wild Anopheles exclusively colonized ponds with soil infusion and avoided those with pellet infusion. When the individual infusions were tested in comparison with lake water, caged An. gambiae sensu stricto (s.s.) showed a dose response: females increasingly avoided the pellet infusion with increasing infusion age (six-day versus lake water: odds ratio (OR) 0.22; 95% confidence interval (CI) 0.1-0.5) and showed increasing preference to lay eggs as soil infusion age increased (six-day versus lake water: OR 2.1; 95% CI 1.4-3.3). Larvae survived in soil infusions equally well as in lake water but died in pellet infusions. Anopheles gambiae s.s. preferred to lay eggs in the non-autoclaved soil (OR 2.6; 95% CI 1.8-3.7) compared with autoclaved soil. There was no change in the avoidance of pellet infusion by individuals reared in the infusion compared with those reared in lake water. CONCLUSION: Wild and caged An. gambiae s.l. females discriminate between potential aquatic habitats for oviposition. These choices benefit the survival of the offspring. Although the study was not designed to distinguish between stimuli that acted over a distance or on contact, it could be demonstrated that the choice of habitat is mediated by chemical cues based on both preference and avoidance. These cues, if identified, might be developed for 'push-pull' strategies to improve malaria vector monitoring and control.


Assuntos
Anopheles/fisiologia , Insetos Vetores/fisiologia , Oviposição , Animais , Anopheles/crescimento & desenvolvimento , Quimiotaxia , Sinais (Psicologia) , Ecossistema , Feminino , Controle de Insetos , Insetos Vetores/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Longevidade , Malária/prevenção & controle
15.
Malar J ; 12: 94, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23497149

RESUMO

BACKGROUND: Recently research has shown that larviciding can be an effective tool for integrated malaria vector control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5% pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa. METHODS: Dose-response and standardized field tests were implemented following standard procedures of the World Health Organization's Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (iii) sub-lethal impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval development. RESULTS: Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence inhibition (EI) values were very low and similar for both species. The minimum dosage that completely inhibited adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (CI) 82%-88%) of adult emergence over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97% (95% CI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by females exposed to 0.018 ppm ai failed to hatch, whilst 98% of eggs laid by females exposed to 0.09 ppm ai did not hatch. CONCLUSION: Anopheles gambiae s.s. and An. arabiensis are highly susceptible to Sumilarv®0.5G at very low dosages. The persistence of this granule formulation in treated habitats under standardized field conditions and its sub-lethal impact, reducing the number of viable eggs from adults emerging from treated ponds, enhances its potential as malaria vector control tool. These unique properties warrant further field testing to determine its suitability for inclusion in malaria vector control programmes.


Assuntos
Anopheles/efeitos dos fármacos , Vetores de Doenças , Inseticidas/farmacologia , Piridinas/farmacologia , Animais , Química Farmacêutica , Relação Dose-Resposta a Droga , Feminino , Malária/prevenção & controle , Controle de Mosquitos/métodos , Análise de Sobrevida , Zigoto/efeitos dos fármacos
16.
Malar J ; 12: 365, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24120083

RESUMO

BACKGROUND: To date no semiochemicals affecting the pre-oviposition behaviour of the malaria vector Anopheles gambiae sensu lato have been described. Water vapour must be the major chemical signal emanating from a potential larval habitat, and although one might expect that gravid An. gambiae s.l. detect and respond to water vapour in their search for an aquatic habitat, this has never been experimentally confirmed for this species. This study aimed to investigate the role of relative humidity or water vapour as a general cue for inducing gravid An. gambiae sensu stricto to make orientated movements towards the source. METHODS: Three experiments were carried out with insectary-reared An. gambiae s.s. One with unfed females and two with gravid females during their peak oviposition time in the early evening. First, unfed females and gravid females were tested separately in still air where a humidity difference was established between opposite ends of a WHO bioassay tube and mosquitoes released individually in the centre of the tube. Movement of mosquitoes to either low or high humidity was recorded. Additionally, gravid mosquitoes were released into a larger air-flow olfactometer and responses measured towards collection chambers that contained cups filled with water or empty cups. RESULTS: Unfed females equally dispersed in the small bioassay tubes to areas of high and low humidity (mean 50% (95% confidence interval (CI) 38-62%). In contrast, gravid females were 2.4 times (95% CI 1.3-4.7) more likely to move towards high humidity than unfed females. The results were even more pronounced in the airflow olfactometer. Gravid females were 10.6 times (95% CI 5.4-20.8) more likely to enter the chamber with water than a dry chamber. CONCLUSIONS: Water vapour is a strong pre-oviposition attractant to gravid An. gambiae s.s. in still and moving air and is likely to be a general cue used by mosquitoes for locating aquatic habitats.


Assuntos
Anopheles/fisiologia , Oviposição , Feromônios/farmacologia , Vapor , Animais , Feminino
17.
Cochrane Database Syst Rev ; (8): CD008923, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23986463

RESUMO

BACKGROUND: Malaria is an important cause of illness and death in people living in many parts of the world, especially sub-Saharan Africa. Long-lasting insecticide treated bed nets (LLINs) and indoor residual spraying (IRS) reduce malaria transmission by targeting the adult mosquito vector and are key components of malaria control programmes. However, mosquito numbers may also be reduced by larval source management (LSM), which targets mosquito larvae as they mature in aquatic habitats. This is conducted by permanently or temporarily reducing the availability of larval habitats (habitat modification and habitat manipulation), or by adding substances to standing water that either kill or inhibit the development of larvae (larviciding). OBJECTIVES: To evaluate the effectiveness of mosquito LSM for preventing malaria. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; CABS Abstracts; and LILACS up to 24 October 2012. We handsearched the Tropical Diseases Bulletin from 1900 to 2010, the archives of the World Health Organization (up to 11 February 2011), and the literature database of the Armed Forces Pest Management Board (up to 2 March 2011). We also contacted colleagues in the field for relevant articles. SELECTION CRITERIA: We included cluster randomized controlled trials (cluster-RCTs), controlled before-and-after trials with at least one year of baseline data, and randomized cross-over trials that compared LSM with no LSM for malaria control. We excluded trials that evaluated biological control of anopheline mosquitoes with larvivorous fish. DATA COLLECTION AND ANALYSIS: At least two authors assessed each trial for eligibility. We extracted data and at least two authors independently determined the risk of bias in the included studies. We resolved all disagreements through discussion with a third author. We analyzed the data using Review Manager 5 software. MAIN RESULTS: We included 13 studies; four cluster-RCTs, eight controlled before-and-after trials, and one randomized cross-over trial. The included studies evaluated habitat modification (one study), habitat modification with larviciding (two studies), habitat manipulation (one study), habitat manipulation plus larviciding (two studies), or larviciding alone (seven studies) in a wide variety of habitats and countries. Malaria incidenceIn two cluster-RCTs undertaken in Sri Lanka, larviciding of abandoned mines, streams, irrigation ditches, and rice paddies reduced malaria incidence by around three-quarters compared to the control (RR 0.26, 95% CI 0.22 to 0.31, 20,124 participants, two trials, moderate quality evidence). In three controlled before-and-after trials in urban and rural India and rural Kenya, results were inconsistent (98,233 participants, three trials, very low quality evidence). In one trial in urban India, the removal of domestic water containers together with weekly larviciding of canals and stagnant pools reduced malaria incidence by three quarters. In one trial in rural India and one trial in rural Kenya, malaria incidence was higher at baseline in intervention areas than in controls. However dam construction in India, and larviciding of streams and swamps in Kenya, reduced malaria incidence to levels similar to the control areas. In one additional randomized cross-over trial in the flood plains of the Gambia River, where larval habitats were extensive and ill-defined, larviciding by ground teams did not result in a statistically significant reduction in malaria incidence (2039 participants, one trial). Parasite prevalenceIn one cluster-RCT from Sri Lanka, larviciding reduced parasite prevalence by almost 90% (RR 0.11, 95% CI 0.05 to 0.22, 2963 participants, one trial, moderate quality evidence). In five controlled before-and-after trials in Greece, India, the Philippines, and Tanzania, LSM resulted in an average reduction in parasite prevalence of around two-thirds (RR 0.32, 95% CI 0.19 to 0.55, 8041 participants, five trials, moderate quality evidence). The interventions in these five trials included dam construction to reduce larval habitats, flushing of streams, removal of domestic water containers, and larviciding. In the randomized cross-over trial in the flood plains of the Gambia River, larviciding by ground teams did not significantly reduce parasite prevalence (2039 participants, one trial). AUTHORS' CONCLUSIONS: In Africa and Asia, LSM is another policy option, alongside LLINs and IRS, for reducing malaria morbidity in both urban and rural areas where a sufficient proportion of larval habitats can be targeted. Further research is needed to evaluate whether LSM is appropriate or feasible in parts of rural Africa where larval habitats are more extensive.


Assuntos
Culicidae , Reservatórios de Doenças/parasitologia , Vetores de Doenças , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Ecossistema , Humanos , Inseticidas , Larva , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos
18.
Trans R Soc Trop Med Hyg ; 117(10): 678-681, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37350735

RESUMO

Millions of affordable healthy homes are needed for the rapidly expanding population of sub-Saharan Africa. This enormous challenge is an opportunity to address pervasive health issues linked to housing, where diseases that most impact children-malaria, diarrhoea and respiratory tract infections-are often acquired. A pilot project in northern Tanzania demonstrated the potential of novel house designs to reduce infectious disease transmission in homes. To conduct a randomized controlled trial of one novel-design house, the research team moved to the southeast of the country. This article describes the challenges experienced during the construction and initial evaluation of the novel house.


Assuntos
Malária , Infecções Respiratórias , Criança , Humanos , Tanzânia/epidemiologia , Habitação , Projetos Piloto , Malária/epidemiologia , Malária/prevenção & controle
19.
PLOS Glob Public Health ; 3(11): e0002307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992017

RESUMO

INTRODUCTION: The population of Africa set to reach 2 billion by 2050. There is therefore great demand for housing across the continent. Research on modified novel designs for housing is a priority to ensure that these homes are not sites of infection for diseases transmission such as malaria. One trial to assess the protection afforded by novel design houses is underway in Mtwara Region, southeastern Tanzania. After constructing 110 of such homes across 60 villages, project staff encountered a certain reticence of the target population to occupy the homes and were faced with accusations of having nefarious intentions. This article explores these accusations, their impacts on home occupancy and lessons for future housing studies. METHODS: This qualitative study drew on in-depth interviews and focus group discussions with ten occupants of the intervention homes, six community leaders and a further 24 community members. Interviews were recorded, transcribed verbatim and translated to English for qualitative content analysis. RESULTS: In communities around the Star Homes, during construction and handover, project staff were widely associated with 'Freemasons', a term used to practices, secrecy, and other conspiracy theories in rural Tanzania. These connections were attributed to other community members and explained in terms of knowledge deficit or envy, with others hoping to be allocated the home. The stories were embedded in assumptions of reciprocity and suspicions about study motives, linked to limited experience of research. The relationship between the accusations of freemasonry and reticence to occupy the houses was not straightforward, with project staff or relatives playing a role in decisions. The stakes were high, because the recipients of Star Homes were the poorest families in targeted communities. CONCLUSION: The results indicate the need for long-term and proactive community engagement, which focuses on building relationships and providing information through recognizable voices and formats. Given the stakes at play in housing interventions, research teams should be prepared for the social upheaval the provision of free new housing can cause.

20.
Malar J ; 11: 374, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23151023

RESUMO

BACKGROUND: Little is known about how malaria mosquitoes locate oviposition sites in nature. Such knowledge is important to help devise monitoring and control measures that could be used to target gravid females. This study set out to develop a suite of tools that can be used to study the attraction of gravid Anopheles gambiae s.s. towards visual or olfactory cues associated with aquatic habitats. METHODS: Firstly, the study developed and assessed methods for using electrocuting nets to analyse the orientation of gravid females towards an aquatic habitat. Electric nets (1m high × 0.5m wide) were powered by a 12V battery via a spark box. High and low energy settings were compared for mosquito electrocution and a collection device developed to retain electrocuted mosquitoes when falling to the ground. Secondly, a range of sticky materials and a detergent were tested to quantify if and where gravid females land to lay their eggs, by treating the edge of the ponds and the water surface. A randomized complete block design was used for all experiments with 200 mosquitoes released each day. Experiments were conducted in screened semi-field systems using insectary-reared An. gambiae s.s. Data were analysed by generalized estimating equations. RESULTS: An electric net operated at the highest spark box energy of a 400 volt direct current made the net spark, creating a crackling sound, a burst of light and a burning smell. This setting caught 64% less mosquitoes than a net powered by reduced voltage output that could neither be heard nor seen (odds ratio (OR) 0.46; 95% confidence interval (CI) 0.40-0.53, p < 0.001). Three sticky boards (transparent film, glue coated black fly-screen and yellow film) were evaluated as catching devices under electric nets and the transparent and shiny black surfaces were found highly attractive (OR 41.6, 95% CI 19.8 - 87.3, p < 0.001 and OR 28.8, 95% CI 14.5 - 56.8, p < 0.001, respectively) for gravid mosquitoes to land on compared to a yellow sticky film board and therefore unsuitable as collection device under the e-nets. With a square of four e-nets around a pond combined with yellow sticky boards on average 33% (95% CI 28-38%) of mosquitoes released were collected. Sticky materials and detergent in the water worked well in collecting mosquitoes when landing on the edge of the pond or on the water surface. Over 80% of collected females were found on the water surface (mean 103, 95% CI 93-115) as compared to the edge of the artificial pond (mean 24, 95% CI 20-28). CONCLUSION: A square of four e-nets with yellow sticky boards as a collection device can be used for quantifying the numbers of mosquitoes approaching a small oviposition site. Shiny sticky surfaces attract gravid females possibly because they are visually mistaken as aquatic habitats. These materials might be developed further as gravid traps. Anopheles gambiae s.s. primarily land on the water surface for oviposition. This behaviour can be exploited for the development of new trapping and control strategies.


Assuntos
Anopheles/fisiologia , Vetores de Doenças , Entomologia/métodos , Oviposição , Animais , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA