Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 346: 140595, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951392

RESUMO

Titanium dioxide (TiO2)-based photocatalysts have gained increasing attention for their versatile applications in organic degradation, hydrogen production, air purification, and CO2 reduction. Various TiO2-based heterojunction structures, including type I, type II, Schottky junction, Z-scheme, and S-scheme, have been extensively studied. The current research frontier is centered on the engineering modifications of TiO2-based nanoheterojunction photocatalysts, such as defect engineering, morphological engineering, crystal phase/facet engineering, and multijunction engineering. These modifications enhance carrier transport, separation, and light absorption, thereby improving the photocatalytic performance. Remarkably, this aspect has been less addressed in existing reviews. This review aims to fill this gap by focusing on the engineering modifications of TiO2-based nanoheterojunction photocatalysts. We delve into specific topics like oxygen vacancies, n-p homojunctions, and double defects. The review also systematically discusses the applications of multidimensional heterojunctions and examines carrier transport pathways in heterophase/facet junctions and their interactions with heterojunctions. A comprehensive summary of multijunction systems, including multi-Schottky junctions, semiconductor-based heterojunction-attached Schottky junctions, and multisemiconductor-based heterojunctions, is presented. Lastly, we outline future perspectives in this promising research field. This paper will assist researchers in constructing more efficient TiO2-based nanoheterojunction photocatalysts.


Assuntos
Oxigênio , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA