RESUMO
Recent introduction of two different lymphoma classifications has raised concerns about consistency in diagnosis, management, and clinical trial enrollment. Data from a large cohort reflecting real-world clinical practice suggest that differences between the classifications will impact <1% of non-Hodgkin lymphomas.
RESUMO
The polyglutamine (polyQ) diseases are a group of nine neurodegenerative diseases caused by the expansion of a polyQ tract that results in protein aggregation. Unlike other model organisms, Dictyostelium discoideum is a proteostatic outlier, naturally encoding long polyQ tracts yet resistant to polyQ aggregation. Here we identify serine-rich chaperone protein 1 (SRCP1) as a molecular chaperone that is necessary and sufficient to suppress polyQ aggregation. SRCP1 inhibits aggregation of polyQ-expanded proteins, allowing for their degradation via the proteasome, where SRCP1 is also degraded. SRCP1's C-terminal domain is essential for its activity in cells, and peptides that mimic this domain suppress polyQ aggregation in vitro. Together our results identify a novel type of molecular chaperone and reveal how nature has dealt with the problem of polyQ aggregation.
Assuntos
Chaperonas Moleculares/metabolismo , Peptídeos/metabolismo , Linhagem Celular , Dictyostelium/metabolismo , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Serina/metabolismo , Ubiquitina/metabolismoRESUMO
To address the current and long-term unmet health needs of the growing population of non-Hodgkin lymphoma (NHL) patients, we established the Lymphoma Epidemiology of Outcomes (LEO) cohort study (NCT02736357; https://leocohort.org/). A total of 7735 newly diagnosed patients aged 18 years and older with NHL were prospectively enrolled from 7/1/2015 to 5/31/2020 at 8 academic centers in the United States. The median age at diagnosis was 62 years (range, 18-99). Participants came from 49 US states and included 538 Black/African-Americans (AA), 822 Hispanics (regardless of race), 3386 women, 716 age <40 years, and 1513 rural residents. At study baseline, we abstracted clinical, pathology, and treatment data; banked serum/plasma (N = 5883, 76.0%) and germline DNA (N = 5465, 70.7%); constructed tissue microarrays for four major NHL subtypes (N = 1189); and collected quality of life (N = 5281, 68.3%) and epidemiologic risk factor (N = 4489, 58.0%) data. Through August 2022, there were 1492 deaths. Compared to population-based SEER data (2015-2019), LEO participants had a similar distribution of gender, AA race, Hispanic ethnicity, and NHL subtype, while LEO was underrepresented for patients who were Asian and aged 80 years and above. Observed overall survival rates for LEO at 1 and 2 years were similar to population-based SEER rates for indolent B-cell (follicular and marginal zone) and T-cell lymphomas, but were 10%-15% higher than SEER rates for aggressive B-cell subtypes (diffuse large B-cell and mantle cell). The LEO cohort is a robust and comprehensive national resource to address the role of clinical, tumor, host genetic, epidemiologic, and other biologic factors in NHL prognosis and survivorship.
Assuntos
Linfoma não Hodgkin , Qualidade de Vida , Humanos , Feminino , Estados Unidos/epidemiologia , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Linfoma não Hodgkin/diagnóstico , Linfócitos B/patologia , PrognósticoRESUMO
BACKGROUND: The goal of this study was to identify and characterize cell-cell interactions that facilitate endothelial tip cell fusion downstream of BMP (bone morphogenic protein)-mediated venous plexus formation. METHODS: High resolution and time-lapse imaging of transgenic reporter lines and loss-of-function studies were carried out to study the involvement of mesenchymal stromal cells during venous angiogenesis. RESULTS: BMP-responsive stromal cells facilitate timely and precise fusion of venous tip cells during developmental angiogenesis. CONCLUSIONS: Stromal cells are required for anastomosis of venous tip cells in the embryonic caudal hematopoietic tissue.
Assuntos
Proteínas Morfogenéticas Ósseas , Células-Tronco Mesenquimais , Animais , Fusão Celular , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais Geneticamente Modificados , Comunicação Celular , Células Estromais/metabolismoRESUMO
Progenitor cell nuclei in the rapidly expanding epithelium of the embryonic vertebrate central nervous system undergo a process called interkinetic nuclear migration (IKNM). Movements of IKNM are generally believed to involve smooth migration of nuclei from apical to basal and back during the G1 and G2 phases of the cell cycle, respectively. Yet, this has not been formally demonstrated, nor have the molecular mechanisms that drive IKNM been identified. Using time-lapse confocal microscopy to observe nuclear movements in zebrafish retinal neuroepithelial cells, we show that, except for brief apical nuclear translocations preceding mitosis, IKNM is stochastic rather than smooth and directed. We also show that IKNM is driven largely by actomyosin-dependent forces as it still occurs when the microtubule cytoskeleton is compromised but is blocked when MyosinII activity is inhibited.
Assuntos
Actomiosina/metabolismo , Núcleo Celular/metabolismo , Retina/citologia , Peixe-Zebra/embriologia , Animais , Complexo Dinactina , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Retina/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismoRESUMO
The development of the biliary system is a complex yet poorly understood process, with relevance to multiple diseases, including biliary atresia, choledochal cysts and gallbladder agenesis. We present here a crucial role for Hippo-Yap/Taz signaling in this context. Analysis of sav1 mutant zebrafish revealed dysplastic morphology and expansion of both intrahepatic and extrahepatic biliary cells, and ultimately larval lethality. Biliary dysgenesis, but not larval lethality, is driven primarily by Yap signaling. Re-expression of Sav1 protein in sav1-/- hepatocytes is able to overcome these initial deficits and allows sav1-/- fish to survive, suggesting cell non-autonomous signaling from hepatocytes. Examination of sav1-/- rescued adults reveals loss of gallbladder and formation of dysplastic cell masses expressing biliary markers, suggesting roles for Hippo signaling in extrahepatic biliary carcinomas. Deletion of stk3 revealed that the phenotypes observed in sav1 mutant fish function primarily through canonical Hippo signaling and supports a role for phosphatase PP2A, but also suggests Sav1 has functions in addition to facilitating Stk3 activity. Overall, this study defines a role for Hippo-Yap signaling in the maintenance of both intra- and extrahepatic biliary ducts.
Assuntos
Sistema Biliar/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Aciltransferases , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Sistema Biliar/anatomia & histologia , Sistema Biliar/crescimento & desenvolvimento , Sistemas CRISPR-Cas/genética , Hidrolases de Éster Carboxílico/metabolismo , Vesícula Biliar/anatomia & histologia , Vesícula Biliar/crescimento & desenvolvimento , Vesícula Biliar/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fígado/anatomia & histologia , Fígado/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinase 3 , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genéticaRESUMO
The Hippo-Yap pathway regulates multiple cellular processes in response to mechanical and other stimuli. In Drosophila, the polarity protein Lethal (2) giant larvae [L(2)gl], negatively regulates Hippo-mediated transcriptional output. However, in vertebrates, little is known about its homolog Llgl1. Here, we define a novel role for vertebrate Llgl1 in regulating Yap stability in cardiomyocytes, which impacts heart development. In contrast to the role of Drosophila L(2)gl, Llgl1 depletion in cultured rat cardiomyocytes decreased Yap protein levels and blunted target gene transcription without affecting Yap transcript abundance. Llgl1 depletion in zebrafish resulted in larger and dysmorphic cardiomyocytes, pericardial effusion, impaired blood flow and aberrant valvulogenesis. Cardiomyocyte Yap protein levels were decreased in llgl1 morphants, whereas Notch, which is regulated by hemodynamic forces and participates in valvulogenesis, was more broadly activated. Consistent with the role of Llgl1 in regulating Yap stability, cardiomyocyte-specific overexpression of Yap in Llgl1-depleted embryos ameliorated pericardial effusion and restored blood flow velocity. Altogether, our data reveal that vertebrate Llgl1 is crucial for Yap stability in cardiomyocytes and its absence impairs cardiac development.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Coração/embriologia , Miócitos Cardíacos/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proteínas de Ciclo Celular/genética , Estabilidade Proteica , Transativadores/genética , Proteínas de Sinalização YAP , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Adherens junction remodeling regulated by apical polarity proteins constitutes a major driving force for tissue morphogenesis, although the precise mechanism remains inconclusive. Here, we report that, in zebrafish, the Crumbs complex component MPP5a interacts with small GTPase Rab11 in Golgi to transport cadherin and Crumbs components synergistically to the apical domain, thus establishing apical epithelial polarity and adherens junctions. In contrast, Par complex recruited by MPP5a is incapable of interacting with Rab11 but might assemble cytoskeleton to facilitate cadherin exocytosis. In accordance, dysfunction of MPP5a induces an invasive migration of epithelial cells. This adherens junction remodeling pattern is frequently observed in zebrafish lens epithelial cells and neuroepithelial cells. The data identify an unrecognized MPP5a-Rab11 complex and describe its essential role in guiding apical polarization and zonula adherens formation in epithelial cells.
Assuntos
Junções Aderentes/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Guanilato Ciclase/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Proteínas rab de Ligação ao GTP/metabolismo , Junções Aderentes/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Células Epiteliais , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Guanilato Ciclase/genética , Transporte Proteico/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas rab de Ligação ao GTP/genéticaRESUMO
Mosunetuzumab is a novel bispecific antibody targeting epitopes on CD3 on T cells and CD20 on B cells with the goal of inducing T-cell mediated elimination of malignant B cells. A recent pivotal phase I/II clinical trial (GO29781) demonstrated that mosunetuzumab induced an overall response rate of 80%, complete response rate of 60%, and a median progression-free survival of 17.9 months in patients with relapsed/refractory (r/r) follicular lymphoma (FL) following at least two prior lines of systemic therapy, including alkylator and anti-CD20 antibody-based therapy. Historical data from cohorts receiving therapy for r/r FL can provide some context for interpretation of single-arm trials. We compared the results from the mosunetuzumab trial to outcomes from a cohort of patients with r/r FL from the LEO Consortium for Real World Evidence (LEO CReWE). We applied clinical trial eligibility criteria to the LEO CReWE cohort and utilized matching-adjusted indirect comparison weighting to balance the clinical characteristics of the LEO CReWE cohort with those from the mosunetuzumab trial. Overall response rates (73%, 95% CI:65-80%) and complete response rates (53%, 95% CI:45-61%) observed in the weighted LEO CReWE cohort were lower than those reported on the mosunetuzumab trial (ORR=80%, 95% CI:70-88%; CR=60%, 95% CI:49-70% respectively). Progression-free survival at 12 months was similar in the weighted LEO CReWE (60%, 95% CI:51-69%) and the mosunetuzumab trial (PFS 58%, 95% CI:47-68%). Sensitivity analyses examining the impact of matching variables, selection of line of therapy, and application of eligibility criteria, provide context for best practices in this setting.
RESUMO
Non-follicular low-grade B-cell lymphomas (LGBCL) are biologically diverse entities that share clinical and histologic features that make definitive pathologic categorization challenging. While most patients with LGBCL have an indolent course, some experience aggressive disease, highlighting additional heterogeneity across these subtypes. To investigate the potential for shared biology across subtypes, we performed RNA sequencing and applied machine learning approaches that identified five clusters of patients that grouped independently of subtype. One cluster was characterized by inferior outcome, upregulation of cell cycle genes, and increased tumor immune cell content. Integration of whole exome sequencing identified novel LGBCL mutations and enrichment of TNFAIP3 and BCL2 alterations in the poor survival cluster. Building on this, we further refined a transcriptomic signature associated with early clinical failure in two independent cohorts. Taken together, this study identifies unique clusters of LGBCL defined by novel gene expression signatures and immune profiles associated with outcome across diagnostic subtypes.
Assuntos
Linfoma de Células B , Humanos , Linfoma de Células B/patologia , Perfilação da Expressão Gênica , TranscriptomaRESUMO
Plasmablastic lymphoma (PBL) is a rare entity, commonly associated with immunosuppressed states such as human immunodeficiency virus (HIV) infection or solid organ transplant. The clinical course is characterized by high relapse rates and a poor prognosis, leading some clinicians to recommend aggressive frontline therapy. However, a specific review of limited stage (LS) PBL patients is not available to evaluate outcomes and justify treatment recommendations. We performed a retrospective review of LS PBL cases to provide insight into this rare disease. Our cohort consisted of 80 stage I or II PBL patients from 13 US academic centers. With a median follow up of 34 months (1-196), the 3-year progression-free survival (PFS) and overall survival (OS) of the entire cohort were 72% (95% CI 62, 83) and 79% (95% CI 70, 89), respectively. The 3-year PFS and OS of patients treated with frontline chemotherapy alone was 65% (95% CI 50, 84) and 71% (95% CI 56, 89), respectively, compared to 85% (95% CI 72, 100) and 96% (95% CI 89, 100), respectively, in patients treated with combined frontline chemotherapy with radiation consolidation. Our data demonstrate favorable outcomes in LS PBL with no improvements in outcome from aggressive frontline treatment including Hyper-CVAD or auto-SCT consolidation. Multivariate regression analysis (MRA) demonstrated improved PFS for patients receiving EPOCH based frontline therapy versus CHOP (HR: 0.23; p = 0.029). Frontline chemotherapy followed by radiation consolidation versus chemotherapy alone appeared to be associated with improved relapse and survival outcomes but did not show statistical significance in MRA.
Assuntos
Infecções por HIV , Linfoma Plasmablástico , Humanos , Linfoma Plasmablástico/terapia , Linfoma Plasmablástico/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica , Intervalo Livre de Progressão , Infecções por HIV/tratamento farmacológico , PrognósticoRESUMO
The different cell types in the central nervous system develop from a common pool of progenitor cells. The nuclei of progenitors move between the apical and basal surfaces of the neuroepithelium in phase with their cell cycle, a process termed interkinetic nuclear migration (INM). In the retina of zebrafish mikre oko (mok) mutants, in which the motor protein Dynactin-1 is disrupted, interkinetic nuclei migrate more rapidly and deeply to the basal side and more slowly to the apical side. We found that Notch signaling is predominantly activated on the apical side in both mutants and wild-type. Mutant progenitors are, thus, less exposed to Notch and exit the cell cycle prematurely. This leads to an overproduction of early-born retinal ganglion cells (RGCs) at the expense of later-born interneurons and glia. Our data indicate that the function of INM is to balance the exposure of progenitor nuclei to neurogenic versus proliferative signals.
Assuntos
Núcleo Celular/metabolismo , Células Neuroepiteliais/citologia , Organogênese , Retina/embriologia , Animais , Padronização Corporal , Ciclo Celular , Diferenciação Celular , Complexo Dinactina , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Associadas aos Microtúbulos/genética , Mutação , Células Neuroepiteliais/metabolismo , Receptores Notch/metabolismo , Retina/citologia , Células Ganglionares da Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
The response of the adult mammalian heart to injury such as myocardial infarction has long been described as primarily fibrotic scarring and adverse remodeling with little to no regeneration of cardiomyocytes. Emerging studies have challenged this paradigm by demonstrating that, indeed, adult mammalian cardiomyocytes are capable of completing cytokinesis albeit at levels vastly insufficient to compensate for the loss of functional cardiomyocytes following ischemic injury. Thus, there is great interest in identifying mechanisms to guide adult cardiomyocyte cell cycle re-entry and facilitate endogenous heart regeneration. The Hippo signaling pathway is a core kinase cascade that functions to suppress the transcriptional co-activators Yap and Taz by phosphorylation and therefore cytoplasmic retention or phospho-degradation. This pathway has recently sparked interest in the field of cardiac regeneration as inhibition of Hippo kinase signaling or overdriving the transcriptional co-activator, Yap, significantly promotes proliferation of terminally differentiated adult mammalian cardiomyocytes and can restore function in failing mouse hearts. Thus, the Hippo pathway is an attractive therapeutic target for promoting cardiomyocyte renewal and cardiac regeneration. Although the core kinases and transcriptional activators of the Hippo pathway have been studied extensively over the last twenty years, the regulatory inputs of this pathway, particularly in vertebrates, are poorly understood. Recent studies have elucidated several upstream regulatory inputs to the Hippo pathway in adult mammalian cardiomyocytes that influence cell proliferation and heart regeneration. Considering upstream inputs to the Hippo pathway are thought to be context and cell type specific, targeting these various components could serve as a therapeutic approach for refining Hippo-Yap signaling in the heart. Here, we provide an overview of the emerging regulatory inputs to the Hippo pathway as they relate to mammalian cardiomyocytes and heart regeneration.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Coração/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração , Transdução de Sinais , Fatores de Transcrição/metabolismo , Via de Sinalização Hippo , HumanosRESUMO
The Hippo pathway and its nuclear effector Yap regulate organ size and cancer formation. While many modulators of Hippo activity have been identified, little is known about the Yap target genes that mediate these growth effects. Here, we show that yap-/- mutant zebrafish exhibit defects in hepatic progenitor potential and liver growth due to impaired glucose transport and nucleotide biosynthesis. Transcriptomic and metabolomic analyses reveal that Yap regulates expression of glucose transporter glut1, causing decreased glucose uptake and use for nucleotide biosynthesis in yap-/- mutants, and impaired glucose tolerance in adults. Nucleotide supplementation improves Yap deficiency phenotypes, indicating functional importance of glucose-fueled nucleotide biosynthesis. Yap-regulated glut1 expression and glucose uptake are conserved in mammals, suggesting that stimulation of anabolic glucose metabolism is an evolutionarily conserved mechanism by which the Hippo pathway controls organ growth. Together, our results reveal a central role for Hippo signaling in glucose metabolic homeostasis.
Assuntos
Glucose/metabolismo , Fígado/embriologia , Nucleotídeos/biossíntese , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Glucose/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Nucleotídeos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinase 3 , Transativadores/genética , Proteínas de Sinalização YAP , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Extranodal marginal zone lymphoma (EMZL) is a heterogeneous disease with a subset of patients exhibiting a more aggressive course. We previously reported that EMZL with multiple mucosal sites (MMS) at diagnosis is characterized by shorter survival. To better recognize patients with different patterns of progression-free survival (PFS) we developed and validated a new prognostic index primarily based on patient's disease characteristics. We derived the "Revised mucosa-associated lymphoid tissue International Prognostic Index" (Revised MALT-IPI) in a large data set (n = 397) by identifying candidate variables that showed highest prognostic association with PFS. The revised MALT-IPI was validated in two independent cohorts, from the University of Iowa/Mayo Clinic (n = 297) and from IELSG-19 study (n = 400). A stepwise Cox regression analysis yielded a model including four independent predictors of shorter PFS. Revised MALT-IPI has scores ranging from 0 to 5, calculated as a sum of one point for each of the following- age >60 years, elevated LDH, and stage III-IV; and two points for MMS. In the training cohort, the Revised MALT-IPI defined four risk groups: low risk (score 0, reference group), low-medium risk (score 1, HR = 1.85, p = .008), medium-high risk (score 2, HR = 3.84, p < .0001), and high risk (score 3+, HR = 8.48, p < .0001). Performance of the Revised MALT-IPI was similar in external validation cohorts. Revised MALT-IPI is a new index centered on disease characteristics that provides robust risk-stratification identifying a group of patients characterized by earlier progression of disease. Revised MALT-IPI can allow a more disease-adjusted management of patients with EMZL in clinical trials and practice.
Assuntos
Linfoma de Zona Marginal Tipo Células B , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Linfoma de Zona Marginal Tipo Células B/tratamento farmacológico , Prognóstico , Fatores de RiscoRESUMO
Jonathan R. Day, MD, PharmD, and Brian K. Link, MD, give their perspective on emerging treatments for follicular lymphoma.
Assuntos
Linfoma Folicular/terapia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Imunoterapia Adotiva , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
The retinal pigment epithelium (RPE) is a specialized monolayer of pigmented cells within the eye that is critical for maintaining visual system function. Diseases affecting the RPE have dire consequences for vision, and the most prevalent of these is atrophic (dry) age-related macular degeneration (AMD), which is thought to result from RPE dysfunction and degeneration. An intriguing possibility for treating RPE degenerative diseases like atrophic AMD is the stimulation of endogenous RPE regeneration; however, very little is known about the mechanisms driving successful RPE regeneration in vivo. Here, we developed a zebrafish transgenic model (rpe65a:nfsB-eGFP) that enabled ablation of large swathes of mature RPE. RPE ablation resulted in rapid RPE degeneration, as well as degeneration of Bruch's membrane and underlying photoreceptors. Using this model, we demonstrate for the first time that zebrafish are capable of regenerating a functional RPE monolayer after RPE ablation. Regenerated RPE cells first appear at the periphery of the RPE, and regeneration proceeds in a peripheral-to-central fashion. RPE ablation elicits a robust proliferative response in the remaining RPE. Subsequently, proliferative cells move into the injury site and differentiate into RPE. BrdU incorporation assays demonstrate that the regenerated RPE is likely derived from remaining peripheral RPE cells. Pharmacological disruption using IWR-1, a Wnt signaling antagonist, significantly reduces cell proliferation in the RPE and impairs overall RPE recovery. These data demonstrate that the zebrafish RPE possesses a robust capacity for regeneration and highlight a potential mechanism through which endogenous RPE regenerate in vivo.
Assuntos
Degeneração Macular/genética , Regeneração/genética , Epitélio Pigmentado da Retina/crescimento & desenvolvimento , cis-trans-Isomerases/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Apoptose/genética , Lâmina Basilar da Corioide/crescimento & desenvolvimento , Lâmina Basilar da Corioide/metabolismo , Diferenciação Celular/genética , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Humanos , Imidas/administração & dosagem , Larva/genética , Larva/crescimento & desenvolvimento , Degeneração Macular/patologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Quinolinas/administração & dosagem , Retina/crescimento & desenvolvimento , Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimentoRESUMO
BACKGROUND: Although many patients with follicular lymphoma (FL) undergo routine radiographic surveillance during their first remission, no consensus exists on the modality, duration, frequency, or need for routine imaging studies. The authors retrospectively examined the effect of surveillance imaging on relapse detection and overall survival (OS) in patients with FL. METHODS: Patients with newly diagnosed FL who had a response to induction therapy were identified from the Lymphoid Malignancies Enterprise Architecture Database (LEAD) at Emory University and from the Molecular Epidemiology Resource (MER) of the University of Iowa/Mayo Clinic. Patients were evaluated for both relapse and method of relapse detection (ie, clinical concerns vs radiologic detection through surveillance imaging in an asymptomatic patient). RESULTS: Of 148 patients in the LEAD cohort, 55 (37%) relapsed, and the majority (n = 35; 64%) of relapses were detected clinically. In the MER cohort, 63 of 177 relapses (54%) were detected clinically. There was no significant difference in OS from the date of diagnosis between the 2 methods of relapse detection in the LEAD (hazard ratio [HR], 0.61; 95% CI, 0.13-2.94; P = .54) and MER (HR, 1.02; 95% CI, 0.47-2.21; P = .96) cohorts. Similarly, there was no significant difference in OS from the date of relapse between the 2 methods of relapse detection in the LEAD (HR, 0.47; 95% CI, 0.10-2.27; P = .35) and MER (HR, 1.02; 95% CI, 0.47-2.21; P = .96) cohorts. CONCLUSIONS: These findings suggest a limited role for routine surveillance imaging in patients with FL who complete front-line therapy. Future studies should evaluate which patients may benefit from a more aggressive surveillance approach and should explore novel methods of relapse detection.
Assuntos
Linfoma Folicular , Diagnóstico por Imagem , Humanos , Linfoma Folicular/diagnóstico por imagem , Linfoma Folicular/tratamento farmacológico , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Indução de Remissão , Estudos RetrospectivosRESUMO
Balancing the rate of differentiation and proliferation in developing tissues is essential to produce organs of robust size and composition. Although many molecular regulators have been established, how these connect to physical and geometrical aspects of tissue architecture is poorly understood. Here, using high-resolution timelapse imaging, we find that changes to cell geometry associated with dense tissue packing play a significant role in regulating differentiation rate in the zebrafish neural tube. Specifically, progenitors that are displaced away from the apical surface due to crowding, tend to differentiate in a Notch-dependent manner. Using simulations we show that interplay between progenitor density, cell shape and changes in differentiation rate could naturally result in negative-feedback control on progenitor cell number. Given these results, we suggest a model whereby differentiation rate is regulated by density dependent effects on cell geometry to: (1) correct variability in cell number; and (2) balance the rates of proliferation and differentiation over development to 'fill' the available space.
Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Neurais/metabolismo , Tubo Neural/embriologia , Neurogênese/fisiologia , Peixe-Zebra/embriologia , Animais , Células-Tronco Neurais/citologia , Tubo Neural/citologia , Receptores Notch/genética , Receptores Notch/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Some patients with diffuse large B-cell lymphoma (DLBCL) present with a concurrent indolent lymphoma at diagnosis. Their outcomes in the rituximab era are not fully defined. Using a prospectively followed cohort of 1324 newly diagnosed DLBCL patients treated with immunochemotherapy, we defined the prevalence, characteristics, and outcome of DLBCL with concurrent indolent lymphoma. Compared with patients with DLBCL alone (n = 1153; 87.1%), patients with concurrent DLBCL and follicular lymphoma (FL) (n = 109; 8.2%) had fewer elevations in lactate dehydrogenase, lower International Prognostic Index (IPI), and predominantly germinal center B-cell-like (GCB) subtype, whereas patients with concurrent DLBCL and other indolent lymphomas (n = 62; 4.7%) had more stage III-IV disease and a trend toward higher IPI and non-GCB subtype. After adjusting for IPI, patients with concurrent DLBCL and FL had similar event-free survival (EFS) (hazard ratio [HR] = 0.95) and a trend of better overall survival (OS) (HR = 0.75) compared with patients with DLBCL alone, but nearly identical EFS (HR = 1.00) and OS (HR = 0.84) compared with patients with GCB DLBCL alone. Patients with concurrent DLBCL and other indolent lymphomas had similar EFS (HR = 1.19) and OS (HR = 1.09) compared with patients with DLBCL alone. In conclusion, DLBCL patients with concurrent FL predominantly had the GCB subtype with outcomes similar to that of GCB DLBCL patients. DLBCL patients with concurrent other indolent lymphoma had similar outcomes compared with patients with DLBCL alone. These patients should not be summarily excluded from DLBCL clinical trials.