Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(3): e1006930, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29538461

RESUMO

Due to their remarkable parasitocidal activity, artemisinins represent the key components of first-line therapies against Plasmodium falciparum malaria. However, the decline in efficacy of artemisinin-based drugs jeopardizes global efforts to control and ultimately eradicate the disease. To better understand the resistance phenotype, artemisinin-resistant parasite lines were derived from two clones of the 3D7 strain of P. falciparum using a selection regimen that mimics how parasites interact with the drug within patients. This long term in vitro selection induced profound stage-specific resistance to artemisinin and its relative compounds. Chemosensitivity and transcriptional profiling of artemisinin-resistant parasites indicate that enhanced adaptive responses against oxidative stress and protein damage are associated with decreased artemisinin susceptibility. This corroborates our previous findings implicating these cellular functions in artemisinin resistance in natural infections. Genomic characterization of the two derived parasite lines revealed a spectrum of sequence and copy number polymorphisms that could play a role in regulating artemisinin response, but did not include mutations in pfk13, the main marker of artemisinin resistance in Southeast Asia. Taken together, here we present a functional in vitro model of artemisinin resistance that is underlined by a new set of genetic polymorphisms as potential genetic markers.


Assuntos
Artemisininas/farmacologia , Resistência a Medicamentos/genética , Marcadores Genéticos , Malária Falciparum/parasitologia , Estresse Oxidativo , Polimorfismo Genético , Proteínas de Protozoários/metabolismo , Antimaláricos/farmacologia , Perfilação da Expressão Gênica , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/genética , Fenótipo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética
2.
Mol Microbiol ; 91(5): 918-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24372851

RESUMO

Drug resistance in Plasmodium falciparum remains a challenge for the malaria eradication programmes around the world. With the emergence of artemisinin resistance, the efficacy of the partner drugs in the artemisinin combination therapies (ACT) that include quinoline-based drugs is becoming critical. So far only few resistance markers have been identified from which only two transmembrane transporters namely PfMDR1 (an ATP-binding cassette transporter) and PfCRT (a drug-metabolite transporter) have been experimentally verified. Another P. falciparum transporter, the ATP-binding cassette containing multidrug resistance-associated protein (PfMRP2) represents an additional possible factor of drug resistance in P. falciparum. In this study, we identified a parasite clone that is derived from the 3D7 P. falciparum strain and shows increased resistance to chloroquine, mefloquine and quinine through the trophozoite and schizont stages. We demonstrate that the resistance phenotype is caused by a 4.1 kb deletion in the 5' upstream region of the pfmrp2 gene that leads to an alteration in the pfmrp2 transcription and thus increased level of PfMRP2 protein. These results also suggest the importance of putative promoter elements in regulation of gene expression during the P. falciparum intra-erythrocytic developmental cycle and the potential of genetic polymorphisms within these regions to underlie drug resistance.


Assuntos
Resistência a Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , Quinolinas/farmacologia , Antimaláricos/farmacologia , Pareamento de Bases/genética , Sequência de Bases , Células Clonais , Resistência a Medicamentos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma de Protozoário/genética , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Transporte Proteico/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Deleção de Sequência/genética , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética
3.
BMC Genomics ; 12: 391, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21810278

RESUMO

BACKGROUND: Artemisinin resistance in Plasmodium falciparum malaria has emerged in Western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. To identify key features associated with the delayed parasite clearance phenotype, we employed DNA microarrays to profile the physiological gene expression pattern of the resistant isolates. RESULTS: In the ring and trophozoite stages, we observed reduced expression of many basic metabolic and cellular pathways which suggests a slower growth and maturation of these parasites during the first half of the asexual intraerythrocytic developmental cycle (IDC). In the schizont stage, there is an increased expression of essentially all functionalities associated with protein metabolism which indicates the prolonged and thus increased capacity of protein synthesis during the second half of the resistant parasite IDC. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of regulatory proteins such as transcription factors or chromatin remodeling associated proteins. In addition, there is a unique and uniform copy number variation pattern in the Cambodian parasites which may represent an underlying genetic background that contributes to the resistance phenotype. CONCLUSIONS: The decreased metabolic activities in the ring stages are consistent with previous suggestions of higher resilience of the early developmental stages to artemisinin. Moreover, the increased capacity of protein synthesis and protein turnover in the schizont stage may contribute to artemisinin resistance by counteracting the protein damage caused by the oxidative stress and/or protein alkylation effect of this drug. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides insight to the complexities of the molecular basis of pathogens with drug resistance phenotypes in vivo.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Perfilação da Expressão Gênica , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Transcrição Gênica/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , Variações do Número de Cópias de DNA/genética , Genômica , Genótipo , Humanos , Plasmodium falciparum/citologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fatores de Tempo , Trofozoítos/citologia , Trofozoítos/efeitos dos fármacos , Trofozoítos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA