Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 161(2): 536-547.e2, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33848536

RESUMO

OBJECTIVE: Hypothalamic melanocortin 4 receptors (MC4R) are a key regulator of energy homeostasis. Brain-penetrant MC4R agonists have failed, as concentrations required to suppress food intake also increase blood pressure. However, peripherally located MC4R may also mediate metabolic benefits of MC4R activation. Mc4r transcript is enriched in mouse enteroendocrine L cells and peripheral administration of the endogenous MC4R agonist, α-melanocyte stimulating hormone (α-MSH), triggers the release of the anorectic hormones Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) in mice. This study aimed to determine whether pathways linking MC4R and L-cell secretion exist in humans. DESIGN: GLP-1 and PYY levels were assessed in body mass index-matched individuals with or without loss-of-function MC4R mutations following an oral glucose tolerance test. Immunohistochemistry was performed on human intestinal sections to characterize the mucosal MC4R system. Static incubations with MC4R agonists were carried out on human intestinal epithelia, GLP-1 and PYY contents of secretion supernatants were assayed. RESULTS: Fasting PYY levels and oral glucose-induced GLP-1 secretion were reduced in humans carrying a total loss-of-function MC4R mutation. MC4R was localized to L cells and regulates GLP-1 and PYY secretion from ex vivo human intestine. α-MSH immunoreactivity in the human intestinal epithelia was predominantly localized to L cells. Glucose-sensitive mucosal pro-opiomelanocortin cells provide a local source of α-MSH that is essential for glucose-induced GLP-1 secretion in small intestine. CONCLUSION: Our findings describe a previously unidentified signaling nexus in the human gastrointestinal tract involving α-MSH release and MC4R activation on L cells in an autocrine and paracrine fashion. Outcomes from this study have direct implications for targeting mucosal MC4R to treat human metabolic disorders.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mucosa Intestinal/metabolismo , Peptídeo YY/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , alfa-MSH/metabolismo , Comunicação Autócrina , Glicemia/metabolismo , Estudos de Casos e Controles , Células Enteroendócrinas/efeitos dos fármacos , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mutação com Perda de Função , Comunicação Parácrina , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/genética , Via Secretória , Transdução de Sinais , Fatores de Tempo , alfa-MSH/farmacologia
2.
Int J Obes (Lond) ; 42(11): 1880-1889, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29568107

RESUMO

BACKGROUND/OBJECTIVES: Evidence from animal studies highlights an important role for serotonin (5-HT), derived from gut enterochromaffin (EC) cells, in regulating hepatic glucose production, lipolysis and thermogenesis, and promoting obesity and dysglycemia. Evidence in humans is limited, although elevated plasma 5-HT concentrations are linked to obesity. SUBJECTS/METHODS: We assessed (i) plasma 5-HT concentrations before and during intraduodenal glucose infusion (4 kcal/min for 30 min) in non-diabetic obese (BMI 44 ± 4 kg/m2, N = 14) and control (BMI 24 ± 1 kg/m2, N = 10) subjects, (ii) functional activation of duodenal EC cells (immunodetection of phospho-extracellular related-kinase, pERK) in response to glucose, and in separate subjects, (iii) expression of tryptophan hydroxylase-1 (TPH1) in duodenum and colon (N = 39), and (iv) 5-HT content in primary EC cells from these regions (N = 85). RESULTS: Plasma 5-HT was twofold higher in obese than control responders prior to (P = 0.025), and during (iAUC, P = 0.009), intraduodenal glucose infusion, and related positively to BMI (R2 = 0.334, P = 0.003) and HbA1c (R2 = 0.508, P = 0.009). The density of EC cells in the duodenum was twofold higher at baseline in obese subjects than controls (P = 0.023), with twofold more EC cells activated by glucose infusion in the obese (EC cells co-expressing 5-HT and pERK, P = 0.001), while the 5-HT content of EC cells in duodenum and colon was similar; TPH1 expression was 1.4-fold higher in the duodenum of obese subjects (P = 0.044), and related positively to BMI (R2 = 0.310, P = 0.031). CONCLUSIONS: Human obesity is characterized by an increased capacity to produce and release 5-HT from the proximal small intestine, which is strongly linked to higher body mass, and glycemic control. Gut-derived 5-HT is likely to be an important driver of pathogenesis in human obesity and dysglycemia.


Assuntos
Colo/citologia , Células Enterocromafins/metabolismo , Obesidade/fisiopatologia , Sistema Nervoso Periférico/fisiologia , Serotonina/metabolismo , Adulto , Glicemia/metabolismo , Células Cultivadas , Colo/metabolismo , Endoscopia Gastrointestinal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Sistema Nervoso Periférico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
3.
Am J Physiol Gastrointest Liver Physiol ; 303(3): G367-76, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22678998

RESUMO

Ghrelin is a gastric peptide hormone that controls appetite and energy homeostasis. Plasma ghrelin levels rise before a meal and fall quickly thereafter. Elucidation of the regulation of ghrelin secretion has been hampered by the difficulty of directly interrogating ghrelin cells diffusely scattered within the complex gastric mucosa. Therefore, we generated transgenic mice with ghrelin cell expression of green fluorescent protein (GFP) to enable characterization of ghrelin secretion in a pure population of isolated gastric ghrelin-expressing GFP (Ghr-GFP) cells. Using quantitative RT-PCR and immunofluorescence staining, we detected a high level of expression of the long-chain fatty acid (LCFA) receptor GPR120, while the other LCFA receptor, GPR40, was undetectable. In short-term-cultured pure Ghr-GFP cells, the LCFAs docosadienoic acid, linolenic acid, and palmitoleic acid significantly suppressed ghrelin secretion. The physiological mechanism of LCFA inhibition on ghrelin secretion was studied in mice. Serum ghrelin levels were transiently suppressed after gastric gavage of LCFA-rich lipid in mice with pylorus ligation, indicating that the ghrelin cell may directly sense increased gastric LCFA derived from ingested intraluminal lipids. Meal-induced increase in gastric mucosal LCFA was assessed by measuring the transcripts of markers for tissue uptake of LCFA, lipoprotein lipase (LPL), fatty acid translocase (CD36), glycosylphosphatidylinositol-anchored HDL-binding protein 1, and nuclear fatty acid receptor peroxisome proliferator-activated receptor-γ. Quantitative RT-PCR studies indicate significantly increased mRNA levels of lipoprotein lipase, glycosylphosphatidylinositol-anchored HDL-binding protein 1, and peroxisome proliferator-activated receptor-γ in postprandial gastric mucosa. These results suggest that meal-related increases in gastric mucosal LCFA interact with GPR120 on ghrelin cells to inhibit ghrelin secretion.


Assuntos
Grelina/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Células Cultivadas , Ácidos Graxos/farmacologia , Mucosa Gástrica/metabolismo , Camundongos , Camundongos Transgênicos , Período Pós-Prandial , RNA Mensageiro/metabolismo
4.
Gastroenterology ; 140(3): 903-12, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20955703

RESUMO

BACKGROUND & AIMS: Long-chain fatty acid receptors G-protein-coupled receptor 40 (GPR40) (FFAR1) and GPR120 have been implicated in the chemosensation of dietary fats. I cells in the intestine secrete cholecystokinin (CCK), a peptide hormone that stimulates digestion of fat and protein, but these cells are rare and hard to identify. We sought to determine whether dietary fat-induced secretion of CCK is directly mediated by GPR40 expressed on I cells. METHODS: We used fluorescence-activated cell sorting to isolate a pure population of I cells from duodenal mucosa in transgenic mice that expressed green fluorescent protein under the control of the CCK promoter (CCK-enhanced green fluorescent protein [eGFP] bacterial artificial chromosome mice). CCK-eGFP cells were evaluated for GPR40 expression by quantitative reverse transcription polymerase chain reaction and immunostaining. GPR40(-/-) mice were bred with CCK-eGFP mice to evaluate functional relevance of GPR40 on long-chain fatty acid-stimulated increases in [Ca(2+)]i and CCK secretion in isolated CCK-eGFP cells. Plasma levels of CCK after olive oil gavage were compared between GPR40(+/+) and GPR40(-/-) mice. RESULTS: Cells that expressed eGFP also expressed GPR40; expression of GPR40 was 100-fold greater than that of cells that did not express eGFP. In vitro, linoleic, oleic, and linolenic acids increased [Ca(2+)]i; linolenic acid increased CCK secretion by 53% in isolated GPR40(+/+) cells that expressed eGFP. In contrast, in GPR40(-/-) that expressed eGFP, [Ca(2+)]i response to linoleic acid was reduced by 50% and there was no significant CCK secretion in response to linolenic acid. In mice, olive oil gavage significantly increased plasma levels of CCK compared with pregavage levels: 5.7-fold in GPR40(+/+) mice and 3.1-fold in GPR40(-/-) mice. CONCLUSIONS: Long-chain fatty acid receptor GPR40 induces secretion of CCK by I cells in response to dietary fat.


Assuntos
Colecistocinina/metabolismo , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Ácidos Graxos/metabolismo , Mucosa Intestinal/metabolismo , Óleos de Plantas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Separação Celular/métodos , Colecistocinina/genética , Cromossomos Artificiais Bacterianos , Duodeno/citologia , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Mucosa Intestinal/citologia , Intubação Gastrointestinal , Ácido Linoleico/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ácido Oleico/metabolismo , Azeite de Oliva , Óleos de Plantas/administração & dosagem , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Ácido alfa-Linolênico/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 300(2): G345-56, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21088235

RESUMO

The spatial orientation of the enteroendocrine cells along the crypt-villus axis is closely associated with their differentiation in the intestine. Here we studied this relationship using primary duodenal crypts and an ex vivo organoid system established from cholecystokinin-green fluorescent protein (CCK-GFP) transgenic mice. In the primary duodenal crypts, GFP+ cells were found not only in the upper crypt but also at the crypt base, where the stem cells reside. Many GFP+ cells below +4 position were positive for the putative intestinal stem cell markers, leucine-rich repeat-containing G protein-coupled receptor 5, CD133, and doublecortin and CaM kinase-like-1, and also for the neuroendocrine transcription factor neurogenin 3. However, these cells were neither stem nor transient amplifying precursor cells because they were negative for both Ki-67 and phospho-Histone H3 and positive for the mature endocrine marker chromogranin A. Furthermore, these cells expressed multiple endocrine hormones. Tracking of GFP+ cells in the organoids from CCK-GFP mice indicated that GFP+ cells were first observed around the +4 position, some of which localized to the crypt base later in the culture period. These results suggest that a subset of enteroendocrine cells migrates down to the crypt base or stays localized at the crypt base, where they express stem and postmitotic endocrine markers. Further investigation of the function of this subset may provide novel insights into the genesis and development of enteroendocrine cells as well as enteroendocrine tumorigenesis.


Assuntos
Biomarcadores/metabolismo , Duodeno/citologia , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Células-Tronco/metabolismo , Animais , Movimento Celular , Colecistocinina/genética , Colecistocinina/metabolismo , Cromogranina A/metabolismo , Células Enteroendócrinas/classificação , Células Enteroendócrinas/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Técnicas Imunológicas , Camundongos , Camundongos Transgênicos , Organoides , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Coloração e Rotulagem , Distribuição Tecidual
6.
Am J Physiol Gastrointest Liver Physiol ; 300(4): G538-46, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21252045

RESUMO

The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an L-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of L-phenylalanine (L-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for L-Phe over D-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to L-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of L-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca(2+), evoked an unexpected 20-30% decrease in CCK secretion compared with basal secretion in CaSR(-/-) CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to L-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR.


Assuntos
Colecistocinina/metabolismo , Duodeno/metabolismo , Fenilalanina/farmacologia , Receptores de Detecção de Cálcio/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Duodeno/citologia , Imunofluorescência , Camundongos , Camundongos Transgênicos , Fenilalanina/metabolismo , Receptores de Detecção de Cálcio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Am J Physiol Gastrointest Liver Physiol ; 300(5): G895-902, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21311026

RESUMO

Dietary protein is a major stimulant for cholecystokinin (CCK) secretion by the intestinal I cell, however, the mechanism by which protein is detected is unknown. Indirect functional evidence suggests that PepT1 may play a role in CCK-mediated changes in gastric motor function. However, it is unclear whether this oligopeptide transporter directly or indirectly activates the I cell. Using both the CCK-expressing enteroendocrine STC-1 cell and acutely isolated native I cells from CCK-enhanced green fluorescent protein (eGFP) mice, we aimed to determine whether PepT1 directly activates the enteroendocrine cell to elicit CCK secretion in response to oligopeptides. Both STC-1 cells and isolated CCK-eGFP cells expressed PepT1 transcripts. STC-1 cells were activated, as measured by ERK(1/2) phosphorylation, by both peptone and the PepT1 substrate Cefaclor; however, the PepT1 inhibitor 4-aminomethyl benzoic acid (AMBA) had no effect on STC-1 cell activity. The PepT1-transportable substrate glycyl-sarcosine dose-dependently decreased gastric motility in anesthetized rats but had no affect on activation of STC-1 cells or on CCK secretion by CCK-eGFP cells. CCK secretion was significantly increased in response to peptone but not to Cefaclor, cephalexin, or Phe-Ala in CCK-eGFP cells. Taken together, the data suggest that PepT1 does not directly mediate CCK secretion in response to PepT1 specific substrates. PepT1, instead, may have an indirect role in protein sensing in the intestine.


Assuntos
Colecistocinina/metabolismo , Células Enteroendócrinas/metabolismo , Hidrolisados de Proteína/farmacologia , Simportadores/fisiologia , Animais , Western Blotting , Células CACO-2 , Cefaclor/farmacologia , Linhagem Celular , Separação Celular , Colecistocinina/genética , Eletroforese em Gel de Poliacrilamida , Células Enteroendócrinas/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Motilidade Gastrointestinal/fisiologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Transportador 1 de Peptídeos , Peptonas/farmacologia , Fosforilação , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores/antagonistas & inibidores , Ácido Tranexâmico/metabolismo
8.
Nat Commun ; 10(1): 2712, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221971

RESUMO

Clostridium difficile (C. difficile) incidence has tripled over the past 15 years and is attributed to the emergence of hypervirulent strains. While it is clear that C. difficile toxins cause damaging colonic inflammation, the immune mechanisms protecting from tissue damage require further investigation. Through a transcriptome analysis, we identify IL-33 as an immune target upregulated in response to hypervirulent C. difficile. We demonstrate that IL-33 prevents C. difficile-associated mortality and epithelial disruption independently of bacterial burden or toxin expression. IL-33 drives colonic group 2 innate lymphoid cell (ILC2) activation during infection and IL-33 activated ILC2s are sufficient to prevent disease. Furthermore, intestinal IL-33 expression is regulated by the microbiota as fecal microbiota transplantation (FMT) rescues antibiotic-associated depletion of IL-33. Lastly, dysregulated IL-33 signaling via the decoy receptor, sST2, predicts C. difficile-associated mortality in human patients. Thus, IL-33 signaling to ILC2s is an important mechanism of defense from C. difficile colitis.


Assuntos
Clostridioides difficile/imunologia , Enterocolite Pseudomembranosa/imunologia , Imunidade Inata , Interleucina-33/metabolismo , Linfócitos/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antibacterianos/efeitos adversos , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidade , Colo/citologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/mortalidade , Enterocolite Pseudomembranosa/terapia , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Perfilação da Expressão Gênica , Humanos , Interleucina-33/imunologia , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , Virulência/imunologia , Adulto Jovem
9.
Nutrients ; 11(2)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678223

RESUMO

Gut-derived serotonin (5-HT) is released from enterochromaffin (EC) cells in response to nutrient cues, and acts to slow gastric emptying and modulate gastric motility. Rodent studies also evidence a role for gut-derived 5-HT in the control of hepatic glucose production, lipolysis and thermogenesis, and in mediating diet-induced obesity. EC cell number and 5-HT content is increased in the small intestine of obese rodents and human, however, it is unknown whether EC cells respond directly to glucose in humans, and whether their capacity to release 5-HT is perturbed in obesity. We therefore investigated 5-HT release from human duodenal and colonic EC cells in response to glucose, sucrose, fructose and α-glucoside (αMG) in relation to body mass index (BMI). EC cells released 5-HT only in response to 100 and 300 mM glucose (duodenum) and 300 mM glucose (colon), independently of osmolarity. Duodenal, but not colonic, EC cells also released 5-HT in response to sucrose and αMG, but did not respond to fructose. 5-HT content was similar in all EC cells in males, and colonic EC cells in females, but 3 to 4-fold higher in duodenal EC cells from overweight females (p < 0.05 compared to lean, obese). Glucose-evoked 5-HT release was 3-fold higher in the duodenum of overweight females (p < 0.05, compared to obese), but absent here in overweight males. Our data demonstrate that primary human EC cells respond directly to dietary glucose cues, with regional differences in selectivity for other sugars. Augmented glucose-evoked 5-HT release from duodenal EC is a feature of overweight females, and may be an early determinant of obesity.


Assuntos
Peso Corporal , Carboidratos/farmacologia , Células Enterocromafins/efeitos dos fármacos , Trato Gastrointestinal/citologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Fatores Sexuais
10.
Cell Metab ; 29(3): 707-718.e8, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30639358

RESUMO

GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression. Circulating GDF15 levels manifest very modest changes in response to moderate caloric surpluses or deficits in mice or humans, differentiating it from classical intestinally derived satiety hormones and leptin. However, GDF15 levels do increase following sustained high-fat feeding or dietary amino acid imbalance in mice. We demonstrate that GDF15 expression is regulated by the integrated stress response and is induced in selected tissues in mice in these settings. Finally, we show that pharmacological GDF15 administration to mice can trigger conditioned taste aversion, suggesting that GDF15 may induce an aversive response to nutritional stress.


Assuntos
Ingestão de Energia/fisiologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Adulto , Animais , Linhagem Celular , Dieta Hiperlipídica/métodos , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
11.
JCI Insight ; 3(23)2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30518693

RESUMO

BACKGROUND: Metformin reduces plasma glucose and has been shown to increase glucagon-like peptide 1 (GLP-1) secretion. Whether this is a direct action of metformin on GLP-1 release, and whether some of the glucose-lowering effect of metformin occurs due to GLP-1 release, is unknown. The current study investigated metformin-induced GLP-1 secretion and its contribution to the overall glucose-lowering effect of metformin and underlying mechanisms in patients with type 2 diabetes. METHODS: Twelve patients with type 2 diabetes were included in this placebo-controlled, double-blinded study. On 4 separate days, the patients received metformin (1,500 mg) or placebo suspended in a liquid meal, with subsequent i.v. infusion of the GLP-1 receptor antagonist exendin9-39 (Ex9-39) or saline. During 240 minutes, blood was sampled. The direct effect of metformin on GLP-1 secretion was tested ex vivo in human ileal and colonic tissue with and without dorsomorphin-induced inhibiting of the AMPK activity. RESULTS: Metformin increased postprandial GLP-1 secretion compared with placebo (P = 0.014), and the postprandial glucose excursions were significantly smaller after metformin + saline compared with metformin + Ex9-39 (P = 0.004). Ex vivo metformin acutely increased GLP-1 secretion (colonic tissue, P < 0.01; ileal tissue, P < 0.05), but the effect was abolished by inhibition of AMPK activity. CONCLUSIONS: Metformin has a direct and AMPK-dependent effect on GLP-1-secreting L cells and increases postprandial GLP-1 secretion, which seems to contribute to metformin's glucose-lowering effect and mode of action. TRIAL REGISTRATION: NCT02050074 (https://clinicaltrials.gov/ct2/show/NCT02050074). FUNDING: This study received grants from the A.P. Møller Foundation, the Novo Nordisk Foundation, the Danish Medical Association research grant, the Australian Research Council, the National Health and Medical Research Council, and Pfizer Inc.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Metformina/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália , Glicemia/efeitos dos fármacos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Prandial
12.
Expert Opin Drug Discov ; 10(8): 825-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25967138

RESUMO

INTRODUCTION: Obesity is a body weight disorder characterized by excess adiposity that increases the risk for developing co-morbidities such as type 2 diabetes. A large medical need exists for new anti-obesity treatments capable of promoting 10% or greater weight loss, with minimal side effects. AREAS COVERED: The authors describe the application of monogenic forms of rare obesity and genome-wide association studies in selecting critical pathways for drug discovery. Furthermore, they review in detail several pathways and pharmacological targets in the central nervous system (e.g., the leptin-melanocortin axis, the opioid system, GLP-1/GLP-1 system, and FGF21/FGFR1c/ß-Klotho axis) that play an important role in the regulation of feeding behavior and energy homeostasis. Special focus is given to new strategies that engage well-known targets via novel mechanisms in order to circumvent issues seen with previous drug candidates that failed in the clinic. Finally, the authors discuss the recent developments around fixed-dose combinations, targeted polypharmacology, and non-traditional combinations of drugs and devices. EXPERT OPINION: The future for new weight-loss approaches to treat obesity looks promising. Current therapies have shown modest effects on weight loss in the general obese population but will have greater impact in smaller homogeneous sub-populations of obese subjects using personalized medicine. Drug combinations that target multiple, complementary pathways have the potential to promote double-digit weight loss in a broader, heterogeneous patient population. Furthermore, the development of advanced subcutaneous delivery technologies has opened up opportunities to develop breakthrough peptide and biologic agents for the treatment of obesity.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Animais , Fármacos Antiobesidade/efeitos adversos , Fármacos Antiobesidade/farmacologia , Desenho de Fármacos , Quimioterapia Combinada , Humanos , Terapia de Alvo Molecular , Obesidade/complicações , Obesidade/fisiopatologia
13.
Sci Transl Med ; 5(178): 178ra41, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23536013

RESUMO

Roux-en-Y gastric bypass (RYGB) results in rapid weight loss, reduced adiposity, and improved glucose metabolism. These effects are not simply attributable to decreased caloric intake or absorption, but the mechanisms linking rearrangement of the gastrointestinal tract to these metabolic outcomes are largely unknown. Studies in humans and rats have shown that RYGB restructures the gut microbiota, prompting the hypothesis that some of the effects of RYGB are caused by altered host-microbial interactions. To test this hypothesis, we used a mouse model of RYGB that recapitulates many of the metabolic outcomes in humans. 16S ribosomal RNA gene sequencing of murine fecal samples collected after RYGB surgery, sham surgery, or sham surgery coupled to caloric restriction revealed that alterations to the gut microbiota after RYGB are conserved among humans, rats, and mice, resulting in a rapid and sustained increase in the relative abundance of Gammaproteobacteria (Escherichia) and Verrucomicrobia (Akkermansia). These changes were independent of weight change and caloric restriction, were detectable throughout the length of the gastrointestinal tract, and were most evident in the distal gut, downstream of the surgical manipulation site. Transfer of the gut microbiota from RYGB-treated mice to nonoperated, germ-free mice resulted in weight loss and decreased fat mass in the recipient animals relative to recipients of microbiota induced by sham surgery, potentially due to altered microbial production of short-chain fatty acids. These findings provide the first empirical support for the claim that changes in the gut microbiota contribute to reduced host weight and adiposity after RYGB surgery.


Assuntos
Adiposidade/fisiologia , Peso Corporal/fisiologia , Derivação Gástrica , Trato Gastrointestinal/microbiologia , Metagenoma/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Cell Metab ; 16(4): 408-10, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23040064

RESUMO

Recent research suggests that obesity may be influenced not only by dietary and genetic risk factors, but also by the trillions of microorganisms inhabiting our gastrointestinal tract. Consistent with this notion, Cho et al. (2012) use mice to demonstrate that subtherapeutic antibiotic treatment promotes adiposity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA