Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337680

RESUMO

99mTc is a well-known radionuclide that is widely used and readily available for SPECT/CT (Single-Photon Emission Computed Tomography) diagnosis. However, commercial isotope carriers are not specific enough to tumours, rapidly clear from the bloodstream, and are not safe. To overcome these limitations, we suggest immunologically compatible recombinant proteins containing a combination of metal binding sites as 99mTc chelators and several different tumour-specific ligands for early detection of tumours. E1b protein containing metal-binding centres and tumour-specific ligands targeting integrin αvß3 and nucleolin, as well as a short Cys-rich sequence, was artificially constructed. It was produced in E. coli, purified by metal-chelate chromatography, and used to obtain a complex with 99mTc. This was administered intravenously to healthy Balb/C mice at an activity dose of about 80 MBq per mouse, and the biodistribution was studied by SPECT/CT for 24 h. Free sodium 99mTc-pertechnetate at the same dose was used as a reference. The selectivity of 99mTc-E1b and the kinetics of isotope retention in tumours were then investigated in experiments in C57Bl/6 and Balb/C mice with subcutaneously transplanted lung carcinoma (LLC) or mammary adenocarcinoma (Ca755, EMT6, or 4T1). The radionuclide distribution ratio in tumour and adjacent normal tissue (T/N) steadily increased over 24 h, reaching 15.7 ± 4.2 for EMT6, 16.5 ± 3.8 for Ca755, 6.7 ± 4.2 for LLC, and 7.5 ± 3.1 for 4T1.


Assuntos
Camundongos Endogâmicos BALB C , Proteínas Recombinantes , Tecnécio , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Camundongos , Proteínas Recombinantes/administração & dosagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tecnécio/química , Feminino , Distribuição Tecidual , Compostos Radiofarmacêuticos/química , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Transplante de Neoplasias , Integrina alfaVbeta3/metabolismo
2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613511

RESUMO

Gold-containing nanoparticles are proven to be an effective radiosensitizer in the radiotherapy of tumors. Reliable imaging of nanoparticles in a tumor and surrounding normal tissues is crucial both for diagnostics and for nanoparticle application as radiosensitizers. The Fe3O4 core was introduced into gold nanoparticles to form a core/shell structure suitable for MRI imaging. The aim of this study was to assess the in vivo bimodal CT and MRI enhancement ability of novel core/shell Fe3O4@Au theranostic nanoparticles. Core/shell Fe3O4@Au nanoparticles were synthesized and coated with PEG and glucose. C57Bl/6 mice bearing Ca755 mammary adenocarcinoma tumors received intravenous injections of the nanoparticles. CT and MRI were performed at several timepoints between 5 and 102 min, and on day 17 post-injection. Core/shell Fe3O4@Au nanoparticles provided significant enhancement of the tumor and tumor blood vessels. Nanoparticles also accumulated in the liver and spleen and were retained in these organs for 17 days. Mice did not show any signs of toxicity over the study duration. These results indicate that theranostic bimodal Fe3O4@Au nanoparticles are non-toxic and serve as effective contrast agents both for CT and MRI diagnostics. These nanoparticles have potential for future biomedical applications in cancer diagnostics and beyond.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Animais , Camundongos , Ouro , Medicina de Precisão , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Nanomedicina Teranóstica/métodos
3.
Molecules ; 26(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207280

RESUMO

The interaction of hafnium(IV) salts (oxide-dichloride, chloride, and bromide) with nitrilotriacetic acid (NTA), diethylenetriamminepentaacetic acid (DTPA), 1,2-diaminocyclohexanetetraacetic acid (CDTA), 1,3-dipropylmino-2-hydroxy N,N,N',N'-tetraacetic acid (dpta), and N-(2-hydroxyethyl)ethylenediamine triacetic acid (HEDTA) has been studied. The corresponding complexes Na2[Hf(NTA)2]·3H2O (1), Na[HfDTPA]·3H2O (2), [HfCDTA(H2O)2] (3), and Na[Hf2(dpta)2]·7.5H2O·0.5C2H5OH (4) have been isolated and characterized and their structures have been determined by single crystal X-ray diffraction. Biological studies of [HfCDTA(H2O)2] have shown that in 5% glucose solution this complex has low toxicity and good contrasting ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA