Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(8): 083002, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683165

RESUMO

We report on an evaluation of an optical clock that uses the ^{2}S_{1/2}→^{2}D_{5/2} transition of a single ^{88}Sr^{+} ion as the reference. In contrast to previous work, we estimate the effective temperature of the blackbody radiation that shifts the reference transition directly during operation from the corresponding frequency shift and the well-characterized sensitivity to thermal radiation. We measure the clock output frequency against an independent ^{171}Yb^{+} ion clock, based on the ^{2}S_{1/2}(F=0)→^{2}F_{7/2}(F=3) electric octupole (E3) transition, and determine the frequency ratio with a total fractional uncertainty of 2.3×10^{-17}. Relying on a previous measurement of the ^{171}Yb^{+} (E3) clock frequency, we find the absolute frequency of the ^{88}Sr^{+} clock transition to be 444 779 044 095 485.277(59) Hz. Our result reduces the uncertainty by a factor of 3 compared with the previously most accurate measurement and may help to resolve so far inconsistent determinations of this value. We also show that for three simultaneously interrogated ^{88}Sr^{+} ions, the increased number causes the expected improvement of the short-term frequency instability of the optical clock without degrading its systematic uncertainty.

2.
Phys Rev Lett ; 126(1): 011102, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480794

RESUMO

We compare two optical clocks based on the ^{2}S_{1/2}(F=0)→^{2}D_{3/2}(F=2) electric quadrupole (E2) and the ^{2}S_{1/2}(F=0)→^{2}F_{7/2}(F=3) electric octupole (E3) transition of ^{171}Yb^{+} and measure the frequency ratio ν_{E3}/ν_{E2}=0.932829404530965376(32), improving upon previous measurements by an order of magnitude. Using two caesium fountain clocks, we find ν_{E3}=642121496772645.10(8) Hz, the most accurate determination of an optical transition frequency to date. Repeated measurements of both quantities over several years are analyzed for potential violations of local position invariance. We improve by factors of about 20 and 2 the limits for fractional temporal variations of the fine structure constant α to 1.0(1.1)×10^{-18}/yr and of the proton-to-electron mass ratio µ to -8(36)×10^{-18}/yr. Using the annual variation of the Sun's gravitational potential at Earth Φ, we improve limits for a potential coupling of both constants to gravity, (c^{2}/α)(dα/dΦ)=14(11)×10^{-9} and (c^{2}/µ)(dµ/dΦ)=7(45)×10^{-8}.

3.
Phys Rev Lett ; 125(14): 143201, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064511

RESUMO

We introduce a scheme to coherently suppress second-rank tensor frequency shifts in atomic clocks, relying on the continuous rotation of an external magnetic field during the free atomic state evolution in a Ramsey sequence. The method retrieves the unperturbed frequency within a single interrogation cycle and is readily applicable to various atomic clock systems. For the frequency shift due to the electric quadrupole interaction, we experimentally demonstrate suppression by more than two orders of magnitude for the ^{2}S_{1/2}→^{2}D_{3/2} transition of a single trapped ^{171}Yb^{+} ion. The scheme provides particular advantages in the case of the ^{171}Yb^{+} ^{2}S_{1/2}→^{2}F_{7/2} electric octupole (E3) transition. For an improved estimate of the residual quadrupole shift for this transition, we measure the excited state electric quadrupole moments Θ(^{2}D_{3/2})=1.95(1)ea_{0}^{2} and Θ(^{2}F_{7/2})=-0.0297(5)ea_{0}^{2} with e the elementary charge and a_{0} the Bohr radius, improving the measurement uncertainties by one order of magnitude.

4.
Phys Rev Lett ; 116(6): 063001, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26918984

RESUMO

We experimentally investigate an optical frequency standard based on the (2)S1/2(F=0)→(2)F7/2(F=3) electric octupole (E3) transition of a single trapped (171)Yb+ ion. For the spectroscopy of this strongly forbidden transition, we utilize a Ramsey-type excitation scheme that provides immunity to probe-induced frequency shifts. The cancellation of these shifts is controlled by interleaved single-pulse Rabi spectroscopy, which reduces the related relative frequency uncertainty to 1.1×10(-18). To determine the frequency shift due to thermal radiation emitted by the ion's environment, we measure the static scalar differential polarizability of the E3 transition as 0.888(16)×10(-40) J m(2)/V(2) and a dynamic correction η(300 K)=-0.0015(7). This reduces the uncertainty due to thermal radiation to 1.8×10(-18). The residual motion of the ion yields the largest contribution (2.1×10(-18)) to the total systematic relative uncertainty of the clock of 3.2×10(-18).

5.
Opt Lett ; 39(14): 4072-5, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121654

RESUMO

We have demonstrated a direct frequency comparison between two 87Sr lattice clocks operated in intercontinentally separated laboratories in real time. Two-way satellite time and frequency transfer technique, based on the carrier-phase, was employed for a direct comparison, with a baseline of 9000 km between Japan and Germany. A frequency comparison was achieved for 83,640 s, resulting in a fractional difference of (1.1±1.6)×10⁻¹5, where the statistical part is the largest contributor to the uncertainty. This measurement directly confirms the agreement of the two optical frequency standards on an intercontinental scale.

6.
Phys Rev Lett ; 113(21): 210802, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25479483

RESUMO

Accurate measurements of different transition frequencies between atomic levels of the electronic and hyperfine structure over time are used to investigate temporal variations of the fine structure constant α and the proton-to-electron mass ratio µ. We measure the frequency of the (2)S1/2→(2)F7/2 electric octupole (E3) transition in (171)Yb(+) against two caesium fountain clocks as f(E3)=642,121,496,772,645.36 Hz with an improved fractional uncertainty of 3.9×10(-16). This transition frequency shows a strong sensitivity to changes of α. Together with a number of previous and recent measurements of the (2)S1/2→(2)D3/2 electric quadrupole transition in (171)Yb(+) and with data from other elements, a least-squares analysis yields (1/α)(dα/dt)=-0.20(20)×10(-16)/yr and (1/µ)(dµ/dt)=-0.5(1.6)×10(-16)/yr, confirming a previous limit on dα/dt and providing the most stringent limit on dµ/dt from laboratory experiments.

7.
Phys Rev Lett ; 109(21): 213002, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23215592

RESUMO

We experimentally investigate a recently proposed optical excitation scheme V. I. Yudin et al. [Phys. Rev. A 82, 011804(R) (2010)] that is a generalization of Ramsey's method of separated oscillatory fields and consists of a sequence of three excitation pulses. The pulse sequence is tailored to produce a resonance signal that is immune to the light shift and other shifts of the transition frequency that are correlated with the interaction with the probe field. We investigate the scheme using a single trapped ^{171}Yb^{+} ion and excite the highly forbidden (2)S(1/2) - (2)F(7/2) electric-octupole transition under conditions where the light shift is much larger than the excitation linewidth, which is in the hertz range. The experiments demonstrate a suppression of the light shift by four orders of magnitude and an immunity against its fluctuations.

8.
Phys Rev Lett ; 108(9): 090801, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22463621

RESUMO

We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition (2)S(1/2)(F=0)→(2)F(7/2)(F=3) in a single trapped (171)Yb(+) ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f(13)6s(2) configuration of the upper state. The electric-quadrupole moment of the (2)F(7/2) state is measured as -0.041(5)ea(0)(2), where e is the elementary charge and a(0) the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.

9.
Opt Express ; 18(20): 21477-83, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20941043

RESUMO

We demonstrate a fully optical, long-distance remote comparison of independent ultrastable optical frequencies reaching a short term stability that is superior to any reported remote comparison of optical frequencies. We use two ultrastable lasers, which are separated by a geographical distance of more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a commercial telecommunication network. The remote characterization spans more than one optical octave and reaches a fractional frequency instability between the independent ultrastable laser systems of 3 x 10 (-15) in 0.1 s. The achieved performance at 100 ms represents an improvement by one order of magnitude to any previously reported remote comparison of optical frequencies and enables future remote dissemination of the stability of 100 mHz linewidth lasers within seconds.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26863657

RESUMO

We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled [Formula: see text] ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the (2)S1/2(F=0)-(2)D3/2(F=2) electric quadrupole transition in [Formula: see text] via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference [Formula: see text] of -1.3×10(-15) with a combined uncertainty of 1.2×10(-15) for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties.

11.
Phys Rev Lett ; 76(1): 18-21, 1996 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-10060423
12.
Opt Lett ; 34(15): 2270-2, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19649067

RESUMO

We demonstrate the long-distance transmission of an ultrastable optical frequency derived directly from a state-of-the-art optical frequency standard. Using an active stabilization system we deliver the frequency via a 146-km-long underground fiber link with a fractional instability of 3 x 10(-15) at 1 s, which is close to the theoretical limit for our transfer experiment. After 30,000 s, the relative uncertainty for the transfer is at the level of 1 x 10(-19). Tests with a very short fiber show that noise in our stabilization system contributes fluctuations that are 2 orders of magnitude lower, namely, 3 x 10(-17) at 1 s, reaching 10(-20) after 4,000 s.

13.
Z Hautkr ; 51(3): 97-101, 1976 Feb 01.
Artigo em Alemão | MEDLINE | ID: mdl-134522

RESUMO

Ozone therapy using the Vapozone 9, an instrument in normal commercial usage, has been carried out on the forehead of 16 male test persons on 7 consecutive days. Before the treatment began and at the end of the treatment period the skin surface lipids on the unchanged skin (casual level) and two hours after defatting the skin (replacement sum) were taken by direct extraction and analysed by means of thin layer chromatography. The results of these investigations rule out a decrease in the free fatty acids by this therapy. As a result of this finding it may assumed that no desinfecting effect on the corynebacterium acnes and other lipasereleasing microorganisms can be attributed to ozone therapy.


Assuntos
Acne Vulgar/terapia , Ozônio/uso terapêutico , Ácidos Graxos não Esterificados/análise , Humanos , Pele/análise , Triglicerídeos/análise
14.
Phys Rev Lett ; 93(17): 170801, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15525061

RESUMO

The comparison of different atomic transition frequencies over time can be used to determine the present value of the temporal derivative of the fine structure constant alpha in a model-independent way without assumptions on constancy or variability of other parameters, allowing tests of the consequences of unification theories. We have measured an optical transition frequency at 688 THz in 171Yb+ with a cesium atomic clock at 2 times separated by 2.8 yr and find a value for the fractional variation of the frequency ratio f(Yb)/f(Cs) of (-1.2+/-4.4)x10(-15) yr(-1), consistent with zero. Combined with recently published values for the constancy of other transition frequencies this measurement sets an upper limit on the present variability of alpha at the level of 2.0x10(-15) yr(-1) (1sigma), corresponding so far to the most stringent limit from laboratory experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA