Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Eng Online ; 19(1): 38, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471439

RESUMO

BACKGROUND: As the rupture of cerebral aneurysm may lead to fatal results, early detection of unruptured aneurysms may save lives. At present, the contrast-unenhanced time-of-flight magnetic resonance angiography is one of the most commonly used methods for screening aneurysms. The computer-assisted detection system for cerebral aneurysms can help clinicians improve the accuracy of aneurysm diagnosis. As fully convolutional network could classify the image pixel-wise, its three-dimensional implementation is highly suitable for the classification of the vascular structure. However, because the volume of blood vessels in the image is relatively small, 3D convolutional neural network does not work well for blood vessels. RESULTS: The presented study developed a computer-assisted detection system for cerebral aneurysms in the contrast-unenhanced time-of-flight magnetic resonance angiography image. The system first extracts the volume of interest with a fully automatic vessel segmentation algorithm, then uses 3D-UNet-based fully convolutional network to detect the aneurysm areas. A total of 131 magnetic resonance angiography image data are used in this study, among which 76 are training sets, 20 are internal test sets and 35 are external test sets. The presented system obtained 94.4% sensitivity in the fivefold cross-validation of the internal test sets and obtained 82.9% sensitivity with 0.86 false positive/case in the detection of the external test sets. CONCLUSIONS: The proposed computer-assisted detection system can automatically detect the suspected aneurysm areas in contrast-unenhanced time-of-flight magnetic resonance angiography images. It can be used for aneurysm screening in the daily physical examination.


Assuntos
Diagnóstico por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Angiografia por Ressonância Magnética , Redes Neurais de Computação , Adolescente , Adulto , Idoso , Automação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
2.
Comput Methods Programs Biomed ; 225: 106998, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35939977

RESUMO

BACKGROUND: Subarachnoid hemorrhage caused by ruptured cerebral aneurysm often leads to fatal consequences. However, if the aneurysm can be found and treated during asymptomatic periods, the probability of rupture can be greatly reduced. At present, time-of-flight magnetic resonance angiography is one of the most commonly used non-invasive screening techniques for cerebral aneurysm, and the application of deep learning technology in aneurysm detection can effectively improve the screening effect of aneurysm. Existing studies have found that three-dimensional features play an important role in aneurysm detection, but they require a large amount of training data and have problems such as a high number of FPs per case. METHODS: This paper proposed a novel method for aneurysm detection. First, a fully automatic cerebral artery segmentation algorithm without training data was used to extract the volume of interest, and then the 3D U-Net was improved by the 3D SENet module to establish an aneurysm detection model. Eventually a set of fully automated, end-to-end aneurysm detection methods have been formed. RESULTS: A total of 231 magnetic resonance angiography image data were used in this study, among which 132 were training sets, 34 were internal test sets and 65 were external test sets. The presented method obtained 97.89±0.88% sensitivity in the five-fold cross-validation and obtained 90.8% sensitivity with 2.47 FPs/case in the detection of the external test sets. CONCLUSIONS: Compared with the results of our previous studies and other studies, the method in this paper achieves the best sensitivity while maintaining low number of FPs per case. This result proves the feasibility, superiority, and further improvement potential of the improved method combining 3D U-Net and channel attention in the task of aneurysm detection.


Assuntos
Aneurisma Intracraniano , Algoritmos , Atenção , Angiografia Cerebral/métodos , Humanos , Imageamento Tridimensional/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA