Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Conserv Biol ; 28(6): 1532-49, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25065640

RESUMO

Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to ecological change, arthropods may be ideal targets for restoration and conservation activities.


Assuntos
Artrópodes/fisiologia , Biodiversidade , Espécies Introduzidas , Viridiplantae/fisiologia , Animais , Conservação dos Recursos Naturais , Cadeia Alimentar , Dinâmica Populacional
2.
Ecol Appl ; 23(1): 148-58, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23495643

RESUMO

Measuring the effects of ecological restoration on wildlife assemblages requires study on broad temporal and spatial scales. Longleaf pine (Pinus palustris) forests are imperiled due to fire suppression and subsequent invasion by hardwood trees. We employed a landscape-scale, randomized-block design to identify how reptile assemblages initially responded to restoration treatments including removal of hardwood trees via mechanical methods (felling and girdling), application of herbicides, or prescribed burning alone. Then, we examined reptile assemblages after all sites experienced more than a decade of prescribed burning at two- to thee-year return intervals. Data were collected concurrently at reference sites chosen to represent target conditions for restoration. Reptile assemblages changed most rapidly in response to prescribed burning, but reptile assemblages at all sites, including reference sites, were generally indistinguishable by the end of the study. Thus, we suggest that prescribed burning in longleaf pine forests over long time periods is an effective strategy for restoring reptile assemblages to the reference condition. Application of herbicides or mechanical removal of hardwood trees provided no apparent benefit to reptiles beyond what was achieved by prescribed fire alone.


Assuntos
Ecossistema , Incêndios , Pinus , Répteis/classificação , Répteis/fisiologia , Animais , Conservação dos Recursos Naturais , Monitoramento Ambiental
3.
Ecol Evol ; 11(1): 536-546, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437449

RESUMO

Habitat degradation and fragmentation are major drivers of amphibian declines. The loss of environmental features that allow for movement between water sources may be particularly detrimental for amphibians in arid environments. Climate changes will increase the importance of microhabitats to amphibians. Enhancing areas to facilitate movement may be a necessary conservation strategy for many animal species that depend on wetlands, including federally threatened Chiricahua leopard frogs (Lithobates chiricahuensis). Habitat preferences of this frog species are not well understood. We sought to better understand fine-scale habitat selection, to inform conservation of Chiricahua leopard frogs. We conducted our study on the Ladder Ranch, a privately owned working bison ranch in New Mexico, USA that supports a large proportion of the remaining Chiricahua leopard frogs in the state. We attached radio transmitters to 44 frogs during summer 2014. We located each frog daily for up to 8 weeks (median = 30 days). We assessed fine-scale habitat selection by comparing characteristics at each frog location and a random location 5 m away using conditional logistic regression. Frogs preferred features that likely reduce desiccation, even after accounting for the presence of water. Frogs selected areas with more low-lying cover, especially aquatic vegetation and woody debris, a tree overstory, and a mud substrate. We recommend managing potential movement corridors for Chiricahua leopard frogs by ensuring the presence of muddy creek bottoms, woody debris, riparian overstory, low-lying ground cover, and pools. Microclimates created by these features seem especially valuable given warming temperatures and modified precipitation regimes, resulting in decreased surface water, soil moisture, and vegetation cover. Retaining or creating preferred habitat features and microclimates in areas between water sources may increase connectivity among isolated populations of Chiricahua leopard frogs and could improve persistence and recovery of other water-obligate species in arid landscapes.

4.
Ecol Evol ; 9(20): 11791-11798, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695888

RESUMO

Evaluating relationships between ecological processes that occur concurrently is complicated by the potential for such processes to covary. Ground-nesting birds rely on habitat characteristics that provide visual and olfactory concealment from predators; this protection often is provided by vegetation at the nest site. Recently, researchers have raised concern that measuring vegetation characteristics at nest fate (success or failure) introduces a bias, as vegetation at successful nests is measured later in the growing season (and has more time to grow) compared with failed nests. In some systems, this bias can lead to an erroneous conclusion that plant height is positively associated with nest survival. However, if the features that provide concealment are invariant during the incubation period, no bias should be expected, and the timing of measurement is less influential. We used data collected from 98 nests to evaluate whether there is evidence that such a bias exists in a study of wild turkey (Meleagris gallopavo) nesting in a montane forest ecosystem. We modeled nest survival as a function of visual obstruction and other covariates of interest. At unsuccessful nests, we collected visual obstruction readings at both the date of nest failure and the projected hatch date and compared survival estimates generated using both sets of vegetation data. In contrast to studies in grassland and shrubland systems, we found little evidence that the timing of vegetation sampling influenced conclusions regarding the association between visual obstruction and nest survival; model selection and estimates of nest survival were similar regardless of when vegetation data were collected. The dominant hiding cover at most of our nests was provided by evergreen shrubs; retention of leaves and slow growth of these plants likely prevent appreciable changes in visual obstruction during the incubation period. When considered in aggregate with a growing body of literature, our results suggest that the influence of timing of vegetation sampling depends on the study system. When designing future studies, investigators should carefully consider the type of structures that provide nest concealment and whether plant phenology is confounded with nest survival.

5.
Ecol Evol ; 8(12): 6144-6156, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29988432

RESUMO

Acoustic recording units (ARUs) enable geographically extensive surveys of sensitive and elusive species. However, a hidden cost of using ARU data for modeling species occupancy is that prohibitive amounts of human verification may be required to correct species identifications made from automated software. Bat acoustic studies exemplify this challenge because large volumes of echolocation calls could be recorded and automatically classified to species. The standard occupancy model requires aggregating verified recordings to construct confirmed detection/non-detection datasets. The multistep data processing workflow is not necessarily transparent nor consistent among studies. We share a workflow diagramming strategy that could provide coherency among practitioners. A false-positive occupancy model is explored that accounts for misclassification errors and enables potential reduction in the number of confirmed detections. Simulations informed by real data were used to evaluate how much confirmation effort could be reduced without sacrificing site occupancy and detection error estimator bias and precision. We found even under a 50% reduction in total confirmation effort, estimator properties were reasonable for our assumed survey design, species-specific parameter values, and desired precision. For transferability, a fully documented r package, OCacoustic, for implementing a false-positive occupancy model is provided. Practitioners can apply OCacoustic to optimize their own study design (required sample sizes, number of visits, and confirmation scenarios) for properly implementing a false-positive occupancy model with bat or other wildlife acoustic data. Additionally, our work highlights the importance of clearly defining research objectives and data processing strategies at the outset to align the study design with desired statistical inferences.

6.
CBE Life Sci Educ ; 12(3): 483-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24006396

RESUMO

Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set of six topics gives students the opportunity to see how natural selection operates in a variety of contexts. Pre- and postinstruction testing showed students' understanding of natural selection increased substantially after completing this series of learning activities. Testing throughout this unit showed steadily increasing student understanding, and surveys indicated students enjoyed the activities.


Assuntos
Evolução Biológica , Biologia/educação , Seleção Genética , Estudantes , Ensino , Universidades , Animais , Coleta de Dados , Cães , Avaliação Educacional , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA