Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 15(1): 47, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518385

RESUMO

BACKGROUND: When suspended in cell culture medium, nano-objects composed of soluble metals such as silver can dissolve resulting in ion formation, altered particle properties (e.g. mass, morphology, etc.), and modulated cellular dose. Cultured cells are exposed not just to nanoparticles but to a complex, dynamic mixture of altered nanoparticles, unbound ions, and ion-ligand complexes. Here, three different cell types (RAW 264.7 macrophages and bone marrow derived macrophages from wild-type C57BL/6 J mice and Scavenger Receptor A deficient (SR-A(-/-)) mice) were exposed to 20 and 110 nm silver nanoparticles, and RAW 264.7 cells were exposed to freshly mixed silver ions, aged silver ions (ions incubated in cell culture medium), and ions formed from nanoparticle dissolution. The In Vitro Sedimentation, Diffusion, Dissolution, and Dosimetry Model (ISD3) was used to predict dose metrics for each exposure scenario. RESULTS: Silver nanoparticles, freshly mixed ions, and ions from nanoparticle dissolution were toxic, while aged ions were not toxic. Macrophages from SR-A(-/-) mice did not take up 20 nm silver nanoparticles as well as wild-types but demonstrated no differences in silver levels after exposure to 110 nm nanoparticles. Dose response modeling with ISD3 predicted dose metrics suggest that amount of ions in cells and area under the curve (AUC) of ion amount in cells are the most predictive of cell viability after nanoparticle and combined nanoparticle/dissolution-formed-ions exposures, respectively. CONCLUSIONS: Results of this study suggest that the unbound silver cation is the ultimate toxicant, and ions formed extracellularly drive toxicity after exposure to nanoparticles. Applying computational modeling (ISD3) to better understand dose metrics for soluble nanoparticles allows for better interpretation of in vitro hazard assessments.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Cátions , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho da Partícula , Células RAW 264.7 , Receptores Depuradores Classe A/genética , Prata/administração & dosagem , Prata/química , Solubilidade , Propriedades de Superfície
2.
Biosens Bioelectron ; 43: 88-93, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23287653

RESUMO

In-vitro tests intended for evaluating the potential health effects of magnetic nanoparticles generally require an accurate measure of cell dose to promote the consistent use and interpretation of biological response. Here, a simple low-cost inductive sensor is developed for quickly determining the total mass of magnetic nanoparticles that is bound to the plasma membrane and internalized by cultured cells. Sensor operation exploits an oscillating magnetic field (f0=250kHz) together with the nonlinear response of particle magnetization to generate a harmonic signal (f3=750kHz) that varies linearly with particulate mass (R(2)>0.999) and is sufficiently sensitive for detecting ∼100ng of carboxyl-coated iron-oxide nanoparticles in under a second. When exploited for measuring receptor-mediated nanoparticle uptake in RAW 264.7 macrophages, results show that the achieved dosimetric performance is comparable with relatively expensive analytical techniques that are much more time-consuming and labor-intensive to perform. The described sensing is therefore potentially better suited for low-cost in-vitro assays that require fast and quantitative magnetic particle detection.


Assuntos
Bioensaio/instrumentação , Técnicas Biossensoriais/instrumentação , Membrana Celular/efeitos da radiação , Magnetismo/instrumentação , Nanopartículas de Magnetita/análise , Nanopartículas de Magnetita/efeitos da radiação , Radiometria/instrumentação , Animais , Membrana Celular/química , Desenho de Equipamento , Análise de Falha de Equipamento , Nanopartículas de Magnetita/química , Camundongos
3.
ACS Nano ; 7(8): 6997-7010, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23808590

RESUMO

Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies should therefore consider how exposure to these materials alters susceptibility to other environmental exposures.


Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas/química , Nanotecnologia/métodos , Poluentes Atmosféricos/efeitos adversos , Animais , Células da Medula Óssea/citologia , Compostos Férricos/química , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação , Lipopolissacarídeos/química , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Fagocitose , Fenótipo , Transdução de Sinais , Streptococcus pneumoniae/metabolismo , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA