Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 33(19-20): 1319-1345, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575677

RESUMO

There are now many reports of human kidney organoids generated via the directed differentiation of human pluripotent stem cells (PSCs) based on an existing understanding of mammalian kidney organogenesis. Such kidney organoids potentially represent tractable tools for the study of normal human development and disease with improvements in scale, structure, and functional maturation potentially providing future options for renal regeneration. The utility of such organotypic models, however, will ultimately be determined by their developmental accuracy. While initially inferred from mouse models, recent transcriptional analyses of human fetal kidney have provided greater insight into nephrogenesis. In this review, we discuss how well human kidney organoids model the human fetal kidney and how the remaining differences challenge their utility.


Assuntos
Rim/fisiologia , Modelos Biológicos , Organoides/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Rim/citologia , Rim/embriologia , Rim/crescimento & desenvolvimento , Organoides/citologia
2.
EMBO J ; 41(15): e110300, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35758142

RESUMO

The intrinsic apoptosis pathway, regulated by the BCL-2 protein family, is essential for embryonic development. Using mice lacking all known apoptosis effectors, BAX, BAK and BOK, we have previously defined the processes during development that require apoptosis. Rare Bok-/- Bax-/- Bak-/- triple knockout (TKO) mice developed to adulthood and several tissues that were thought to require apoptosis during development appeared normal. This raises the question if all apoptosis had been abolished in the TKO mice or if other BCL-2 family members could act as effectors of apoptosis. Here, we investigated the role of BID, generally considered to link the extrinsic and intrinsic apoptosis pathways, acting as a BH3-only protein initiating apoptosis upstream of BAX and BAK. We found that Bok-/- Bax-/- Bak-/- Bid-/- quadruple knockout (QKO) mice have additional developmental anomalies compared to TKO mice, consistent with a role of BID, not only upstream but also in parallel to BAX, BAK and BOK. Mitochondrial experiments identified a small cytochrome c-releasing activity of full-length BID. Collectively, these findings suggest a new effector role for BID in the intrinsic apoptosis pathway.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2 , Animais , Camundongos , Apoptose , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Desenvolvimento Embrionário/genética , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334329

RESUMO

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Assuntos
Enzima de Conversão de Angiotensina 2 , Rim , Organoides , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/virologia , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/virologia , Lisinopril/farmacologia , Lisinopril/metabolismo , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/virologia , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/virologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/virologia , Receptores de Coronavírus/metabolismo , Modelos Biológicos , Serina Endopeptidases/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco/citologia
4.
Kidney Int ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901605

RESUMO

Vascularization plays a critical role in organ maturation and cell type development. Drug discovery, organ mimicry, and ultimately transplantation hinge on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcame this hurdle by combining a human induced pluripotent stem cell (iPSC) line containing an inducible ETS translocation variant 2 (ETV2) (a transcription factor playing a role in endothelial cell development) that directs endothelial differentiation in vitro, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive endothelialization with a cellular identity most closely related to human kidney endothelia. Endothelialized kidney organoids also show increased maturation of nephron structures, an associated fenestrated endothelium with de novo formation of glomerular and venous subtypes, and the emergence of drug-responsive renin expressing cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Thus, incorporation of an engineered endothelial niche into a previously published kidney organoid protocol allowed the orthogonal differentiation of endothelial and parenchymal cell types, demonstrating the potential for applicability to other basic and translational organoid studies.

5.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553766

RESUMO

The postnatal kidney is predominantly composed of nephron epithelia with the interstitial components representing a small proportion of the final organ, except in the diseased state. This is in stark contrast to the developing organ, which arises from the mesoderm and comprises an expansive stromal population with distinct regional gene expression. In many organs, the identity and ultimate function of an epithelium is tightly regulated by the surrounding stroma during development. However, although the presence of a renal stromal stem cell population has been demonstrated, the focus has been on understanding the process of nephrogenesis whereas the role of distinct stromal components during kidney morphogenesis is less clear. In this Review, we consider what is known about the role of the stroma of the developing kidney in nephrogenesis, where these cells come from as well as their heterogeneity, and reflect on how this information may improve human kidney organoid models.


Assuntos
Células-Tronco Embrionárias/metabolismo , Rim/embriologia , Animais , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Rim/citologia , Rim/metabolismo , Organogênese
6.
J Am Soc Nephrol ; 34(1): 88-109, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36167728

RESUMO

BACKGROUND: NPHS2 variants are the most common cause of steroid-resistant nephrotic syndrome in children >1 month old. Missense NPHS2 variants were reported to cause mistrafficking of the encoded protein, PODOCIN, but this conclusion was on the basis of overexpression in some nonpodocyte cell lines. METHODS: We generated a series of human induced pluripotent stem cell (iPSC) lines bearing pathogenic missense variants of NPHS2 , encoding the protein changes p.G92C, p.P118L, p.R138Q, p.R168H, and p.R291W, and control lines. iPSC lines were also generated from a patient with steroid-resistant nephrotic syndrome (p.R168H homozygote) and a healthy heterozygous parent. All lines were differentiated into kidney organoids. Immunofluorescence assessed PODOCIN expression and subcellular localization. Podocytes were transcriptionally profiled and PODOCIN-NEPHRIN interaction interrogated. RESULTS: All variant lines revealed reduced levels of PODOCIN protein in the absence of reduced transcription. Although wild-type PODOCIN localized to the membrane, distinct variant proteins displayed unique patterns of subcellular protein trafficking, some unreported. P118L and R138Q were preferentially retained in the endoplasmic reticulum (ER); R168H and R291W accumulated in the Golgi. Podocyte profiling demonstrated minimal disease-associated transcriptional change. All variants displayed podocyte-specific apoptosis, which was not linked to ER stress. NEPHRIN-PODOCIN colocalization elucidated the variant-specific effect on NEPHRIN association and hence NEPHRIN trafficking. CONCLUSIONS: Specific variants of endogenous NPHS2 result in distinct subcellular PODOCIN localization within organoid podocytes. Understanding the effect of each variant on protein levels and localization and the effect on NEPHRIN provides additional insight into the pathobiology of NPHS2 variants. PODCAST: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_01_05_JASN2022060707.mp3.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome Nefrótica , Criança , Humanos , Lactente , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Rim/metabolismo , Mutação
7.
J Am Soc Nephrol ; 33(1): 15-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789545

RESUMO

Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.


Assuntos
Nefropatias/terapia , Rim/fisiologia , Regeneração/fisiologia , Animais , Humanos , Nefropatias/etiologia , Nefropatias/patologia , Camundongos , Transplante de Células-Tronco
8.
Annu Rev Physiol ; 81: 335-357, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30742789

RESUMO

Human kidney tissue can now be generated via the directed differentiation of human pluripotent stem cells. This advance is anticipated to facilitate the modeling of human kidney diseases, provide platforms for nephrotoxicity screening, enable cellular therapy, and potentially generate tissue for renal replacement. All such applications will rely upon the accuracy and reliability of the model and the capacity for stem cell-derived kidney tissue to recapitulate both normal and diseased states. In this review, we discuss the models available, how well they recapitulate the human kidney, and how far we are from application of these cells for use in cellular therapies.


Assuntos
Rim/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Humanos , Nefropatias/fisiopatologia
9.
Dev Biol ; 474: 22-36, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33333068

RESUMO

There is no doubt that the development of transplantable synthetic kidneys could improve the outcome for the many millions of people worldwide suffering from chronic kidney disease. Substantial progress has been made in the last 6 years in the generation of kidney tissue from stem cells. However, the limited scale, incomplete cellular complexity and functional immaturity of such structures suggests we are some way from this goal. While developmental biology has successfully guided advances to date, these human kidney models are limited in their capacity for ongoing nephrogenesis and lack corticomedullary definition, a unified vasculature and a coordinated exit path for urinary filtrate. This review will reassess our developmental understanding of how the mammalian embryo manages to create kidneys, how this has informed our progress to date and how both engineering and developmental biology can continue to guide us towards a synthetic kidney.


Assuntos
Rim/crescimento & desenvolvimento , Engenharia Tecidual/métodos , Animais , Humanos , Nefropatias/embriologia , Nefropatias/patologia , Organogênese , Organoides/crescimento & desenvolvimento , Biologia Sintética/métodos
10.
Kidney Int ; 102(5): 1013-1029, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970244

RESUMO

The ability to generate 3-dimensional models of the developing human kidney via the directed differentiation of pluripotent stem cells-termed kidney organoids-has been hailed as a major advance in experimental nephrology. Although these provide an opportunity to interrogate human development, model-specific kidney diseases facilitate drug screening and even deliver bioengineered tissue; most of these prophetic end points remain to be realized. Indeed, at present we are still finding out what we can learn and what we cannot learn from this approach. In this review, we will summarize the approaches available to generate models of the human kidney from stem cells, the existing successful applications of kidney organoids, their limitations, and remaining challenges.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nefropatias , Células-Tronco Pluripotentes , Humanos , Organoides , Rim , Diferenciação Celular
11.
Development ; 146(12)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31118232

RESUMO

Recent advances in the generation of kidney organoids and the culture of primary nephron progenitors from mouse and human have been based on knowledge of the molecular basis of kidney development in mice. Although gene expression during kidney development has been intensely investigated, single cell profiling provides new opportunities to further subsect component cell types and the signalling networks at play. Here, we describe the generation and analysis of 6732 single cell transcriptomes from the fetal mouse kidney [embryonic day (E)18.5] and 7853 sorted nephron progenitor cells (E14.5). These datasets provide improved resolution of cell types and specific markers, including subdivision of the renal stroma and heterogeneity within the nephron progenitor population. Ligand-receptor interaction and pathway analysis reveals novel crosstalk between cellular compartments and associates new pathways with differentiation of nephron and ureteric epithelium cell types. We identify transcriptional congruence between the distal nephron and ureteric epithelium, showing that most markers previously used to identify ureteric epithelium are not specific. Together, this work improves our understanding of metanephric kidney development and provides a template to guide the regeneration of renal tissue.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Receptor Cross-Talk , Análise de Célula Única/métodos , Algoritmos , Animais , Diferenciação Celular , Linhagem da Célula , Epitélio/embriologia , Rim/citologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Néfrons/embriologia , Organogênese , Transdução de Sinais , Células-Tronco/citologia , Transcriptoma , Ureter/embriologia
12.
Development ; 146(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846463

RESUMO

Kidney organoids have potential uses in disease modelling, drug screening and regenerative medicine. However, novel cost-effective techniques are needed to enable scaled-up production of kidney cell types in vitro We describe here a modified suspension culture method for the generation of kidney micro-organoids from human pluripotent stem cells. Optimisation of differentiation conditions allowed the formation of micro-organoids, each containing six to ten nephrons that were surrounded by endothelial and stromal populations. Single cell transcriptional profiling confirmed the presence and transcriptional equivalence of all anticipated renal cell types consistent with a previous organoid culture method. This suspension culture micro-organoid methodology resulted in a three- to fourfold increase in final cell yield compared with static culture, thereby representing an economical approach to the production of kidney cells for various biological applications.


Assuntos
Técnicas de Cultura de Células , Regulação da Expressão Gênica no Desenvolvimento , Rim/citologia , Células-Tronco Pluripotentes/citologia , Albuminas/metabolismo , Diferenciação Celular , Células Cultivadas , Doxorrubicina/farmacologia , Humanos , Néfrons/metabolismo , Organoides , Transdução de Sinais , Transcrição Gênica , Proteínas Wnt/metabolismo
13.
Nat Methods ; 16(1): 79-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573816

RESUMO

The utility of human pluripotent stem cell-derived kidney organoids relies implicitly on the robustness and transferability of the protocol. Here we analyze the sources of transcriptional variation in a specific kidney organoid protocol. Although individual organoids within a differentiation batch showed strong transcriptional correlation, we noted significant variation between experimental batches, particularly in genes associated with temporal maturation. Single-cell profiling revealed shifts in nephron patterning and proportions of component cells. Distinct induced pluripotent stem cell clones showed congruent transcriptional programs, with interexperimental and interclonal variation also strongly associated with nephron patterning. Epithelial cells isolated from organoids aligned with total organoids at the same day of differentiation, again implicating relative maturation as a confounder. This understanding of experimental variation facilitated an optimized analysis of organoid-based disease modeling, thereby increasing the utility of kidney organoids for personalized medicine and functional genomics.


Assuntos
Rim/metabolismo , Organoides/metabolismo , Diferenciação Celular/genética , Células Clonais , Células Epiteliais/citologia , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Nefropatias/genética , Nefropatias/patologia , Modelos Biológicos , Organoides/citologia , Reprodutibilidade dos Testes , Análise de Célula Única , Transcrição Gênica
14.
Nat Mater ; 20(2): 260-271, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33230326

RESUMO

Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited scale. Here, we apply extrusion-based three-dimensional cellular bioprinting to deliver rapid and high-throughput generation of kidney organoids with highly reproducible cell number and viability. We demonstrate that manual organoid generation can be replaced by 6- or 96-well organoid bioprinting and evaluate the relative toxicity of aminoglycosides as a proof of concept for drug testing. In addition, three-dimensional bioprinting enables precise manipulation of biophysical properties, including organoid size, cell number and conformation, with modification of organoid conformation substantially increasing nephron yield per starting cell number. This facilitates the manufacture of uniformly patterned kidney tissue sheets with functional proximal tubular segments. Hence, automated extrusion-based bioprinting for kidney organoid production delivers improvements in throughput, quality control, scale and structure, facilitating in vitro and in vivo applications of stem cell-derived human kidney tissue.


Assuntos
Bioimpressão , Túbulos Renais Proximais/metabolismo , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Humanos , Túbulos Renais Proximais/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia
15.
J Am Soc Nephrol ; 32(7): 1697-1712, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33911000

RESUMO

BACKGROUND: Podocytes are critical to maintaining the glomerular filtration barrier, and mutations in nephrotic syndrome genes are known to affect podocyte calcium signaling. However, the role of calcium signaling during podocyte development remains unknown. METHODS: We undertook live imaging of calcium signaling in developing podocytes, using zebrafish larvae and human kidney organoids. To evaluate calcium signaling during development and in response to channel blockers and genetic defects, the calcium biosensor GCaMP6s was expressed in zebrafish podocytes. We used electron microscopy to evaluate filtration barrier formation in zebrafish, and Fluo-4 to detect calcium signals in differentiating podocytes in human kidney organoids. RESULTS: Immature zebrafish podocytes (2.5 days postfertilization) generated calcium transients that correlated with interactions with forming glomerular capillaries. Calcium transients persisted until 4 days postfertilization, and were absent after glomerular barrier formation was complete. We detected similar calcium transients in maturing human organoid glomeruli, suggesting a conserved mechanism. In both models, inhibitors of SERCA or IP3 receptor calcium-release channels blocked calcium transients in podocytes, whereas lanthanum was ineffective, indicating the calcium source is from intracellular podocyte endoplasmic-reticulum stores. Calcium transients were not affected by blocking heartbeat or by blocking development of endothelium or endoderm, and they persisted in isolated glomeruli, suggesting podocyte-autonomous calcium release. Inhibition of expression of phospholipase C-γ1, but not nephrin or phospholipase C-ε1, led to significantly decreased calcium activity. Finally, blocking calcium release affected glomerular shape and podocyte foot process formation, supporting the critical role of calcium signaling in glomerular morphogenesis. CONCLUSIONS: These findings establish podocyte cell-autonomous calcium signaling as a prominent and evolutionarily conserved feature of podocyte differentiation and demonstrate its requirement for podocyte foot process formation.

16.
Semin Cell Dev Biol ; 91: 153-168, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30184476

RESUMO

Decades of research into the molecular and cellular regulation of kidney morphogenesis in rodent models, particularly the mouse, has provided both an atlas of the mammalian kidney and a roadmap for recreating kidney cell types with potential applications for the treatment of kidney disease. With advances in both our capacity to maintain nephron progenitors in culture, reprogram to kidney cell types and direct the differentiation of human pluripotent stem cells to kidney endpoints, renal regeneration via cellular therapy or tissue engineering may be possible. Human kidney models also have potential for disease modelling and drug screening. Such applications will rely upon the accuracy of the model at the cellular level and the capacity for stem-cell derived kidney tissue to recapitulate both normal and diseased kidney tissue. In this review, we will discuss the available cell sources, how well they model the human kidney and how far we are from application either as models or for tissue engineering.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Rim/fisiologia , Néfrons/fisiologia , Regeneração , Insuficiência Renal Crônica/terapia , Animais , Diferenciação Celular , Humanos , Rim/citologia , Néfrons/citologia , Células-Tronco Pluripotentes/citologia , Insuficiência Renal Crônica/fisiopatologia , Engenharia Tecidual/métodos
17.
Am J Hum Genet ; 102(5): 816-831, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29706353

RESUMO

Despite the increasing diagnostic rate of genomic sequencing, the genetic basis of more than 50% of heritable kidney disease remains unresolved. Kidney organoids differentiated from induced pluripotent stem cells (iPSCs) of individuals affected by inherited renal disease represent a potential, but unvalidated, platform for the functional validation of novel gene variants and investigation of underlying pathogenetic mechanisms. In this study, trio whole-exome sequencing of a prospectively identified nephronophthisis (NPHP) proband and her parents identified compound-heterozygous variants in IFT140, a gene previously associated with NPHP-related ciliopathies. IFT140 plays a key role in retrograde intraflagellar transport, but the precise downstream cellular mechanisms responsible for disease presentation remain unknown. A one-step reprogramming and gene-editing protocol was used to derive both uncorrected proband iPSCs and isogenic gene-corrected iPSCs, which were differentiated to kidney organoids. Proband organoid tubules demonstrated shortened, club-shaped primary cilia, whereas gene correction rescued this phenotype. Differential expression analysis of epithelial cells isolated from organoids suggested downregulation of genes associated with apicobasal polarity, cell-cell junctions, and dynein motor assembly in proband epithelial cells. Matrigel cyst cultures confirmed a polarization defect in proband versus gene-corrected renal epithelium. As such, this study represents a "proof of concept" for using proband-derived iPSCs to model renal disease and illustrates dysfunctional cellular pathways beyond the primary cilium in the setting of IFT140 mutations, which are established for other NPHP genotypes.


Assuntos
Cílios/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/patologia , Organoides/patologia , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células Cultivadas , Reprogramação Celular/genética , Ataxia Cerebelar/genética , Células Epiteliais/metabolismo , Feminino , Fibroblastos/patologia , Flagelos/metabolismo , Edição de Genes , Perfilação da Expressão Gênica , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Rim/diagnóstico por imagem , Fenótipo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Retinose Pigmentar/genética , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Sequenciamento do Exoma
18.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858339

RESUMO

Nephron formation continues throughout kidney morphogenesis in both mice and humans. Lineage tracing studies in mice identified a self-renewing Six2-expressing nephron progenitor population able to give rise to the full complement of nephrons throughout kidney morphogenesis. To investigate the origin of nephrons within human pluripotent stem cell-derived kidney organoids, we performed a similar fate-mapping analysis of the SIX2-expressing lineage in induced pluripotent stem cell (iPSC)-derived kidney organoids to explore the feasibility of investigating lineage relationships in differentiating iPSCs in vitro Using CRISPR/Cas9 gene-edited lineage reporter lines, we show that SIX2-expressing cells give rise to nephron epithelial cell types but not to presumptive ureteric epithelium. The use of an inducible (CreERT2) line revealed a declining capacity for SIX2+ cells to contribute to nephron formation over time, but retention of nephron-forming capacity if provided an exogenous WNT signal. Hence, while human iPSC-derived kidney tissue appears to maintain lineage relationships previously identified in developing mouse kidney, unlike the developing kidney in vivo, kidney organoids lack a nephron progenitor niche capable of both self-renewal and ongoing nephrogenesis.


Assuntos
Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genes Reporter , Néfrons/embriologia , Néfrons/metabolismo , Organogênese/genética , Biomarcadores , Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Diferenciação Celular , Proteínas de Homeodomínio/genética , Humanos , Proteínas do Tecido Nervoso/genética , Organoides , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Célula Única
19.
Nature ; 526(7574): 564-8, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26444236

RESUMO

The human kidney contains up to 2 million epithelial nephrons responsible for blood filtration. Regenerating the kidney requires the induction of the more than 20 distinct cell types required for excretion and the regulation of pH, and electrolyte and fluid balance. We have previously described the simultaneous induction of progenitors for both collecting duct and nephrons via the directed differentiation of human pluripotent stem cells. Paradoxically, although both are of intermediate mesoderm in origin, collecting duct and nephrons have distinct temporospatial origins. Here we identify the developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors. Using this knowledge, we have generated kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells. Within these organoids, individual nephrons segment into distal and proximal tubules, early loops of Henle, and glomeruli containing podocytes elaborating foot processes and undergoing vascularization. When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney. Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.


Assuntos
Linhagem da Célula , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Néfrons/citologia , Néfrons/embriologia , Organogênese , Organoides/citologia , Animais , Técnicas de Cocultura , Células Alimentadoras , Feto/anatomia & histologia , Feto/citologia , Feto/embriologia , Fibroblastos/citologia , Humanos , Túbulos Renais Coletores/citologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/embriologia , Túbulos Renais Proximais/fisiologia , Mesoderma/citologia , Camundongos , Néfrons/anatomia & histologia , Néfrons/fisiologia , Organoides/embriologia , Técnicas de Cultura de Tecidos
20.
Proc Natl Acad Sci U S A ; 115(23): 5998-6003, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784808

RESUMO

Nephrogenesis concludes by the 36th week of gestation in humans and by the third day of postnatal life in mice. Extending the nephrogenic period may reduce the onset of adult renal and cardiovascular disease associated with low nephron numbers. We conditionally deleted either Mtor or Tsc1 (coding for hamartin, an inhibitor of Mtor) in renal progenitor cells. Loss of one Mtor allele caused a reduction in nephron numbers; complete deletion led to severe paucity of glomeruli in the kidney resulting in early death after birth. By contrast, loss of one Tsc1 allele from renal progenitors resulted in a 25% increase in nephron endowment with no adverse effects. Increased progenitor engraftment rates ex vivo relative to controls correlated with prolonged nephrogenesis through the fourth postnatal day. Complete loss of both Tsc1 alleles in renal progenitors led to a lethal tubular lesion. The hamartin phenotypes are not dependent on the inhibitory effect of TSC on the Mtor complex but are dependent on Raptor.


Assuntos
Néfrons , Organogênese/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Néfrons/química , Néfrons/citologia , Néfrons/crescimento & desenvolvimento , Néfrons/fisiologia , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA