Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 694: 115626, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032527

RESUMO

Chimeric-antigen-receptor-T (CAR-T) have heralded a paradigm shift in the landscape of cancer immunotherapy. Retrovirus-mediated gene transfer serves to deliver the specific CAR expressing cassette into T cells across a spectrum of basic research and clinical contests in cancer therapy. However, it is necessary to devise a precise and validated quantitative methodology tailored to the diverse CAR constructs. In the investigation, a TaqMan real-time qPCR method was developed, utilizing primers targeting ψ gene sequence. This method offers a swift, sensitive, reproducible, and accurate tool for evaluating retroviral copy numbers at the integrated DNA level. Importantly, the established qPCR exhibits no cross-reactivity with non-transduced T cells or tissues. The regression equation characterizing TaqMan real-time PCR dynamics is y = -3.3841x + 41.402 (R2 = 0.999), showing an amplification efficiency of 97.47 %. Notably, the established qPCR method achieves a minimum detection of 43.1 copies/µL. Furthermore, both intra- and inter-group discrepancies remain below 4 %, underscoring the good repeatability of the established method. Our in vitro and in vivo results also support its sensitivity, specificity, and stability. Consequently, this method offers researchers with a cost-effective tool to quantify CAR copies both in vitro and in vivo.

2.
Pharmacol Res ; 187: 106581, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436709

RESUMO

OBJECTIVE: To investigate the mechanism and efficacy of transarterial viroembolization (TAVE) with an oncolytic virus (OH2) for the treatment of liver cancer in rabbit VX2 tumor models. MATERIALS AND METHODS: Subcutaneous tumor and liver cancer models were established to determine the optimal viral titer and administration modality of OH2. Different liver cancer models were established to evaluate the locoregional tumor response, synergistic and standby effects, survival benefit, and specific antitumor immune memory after TAVE treatment. The immune cell densities in tumor tissues were measured. RESULTS: The optimal viral titer of OH2 was 1 × 107 CCID50. TAVE was the most effective modality with greater homogeneous OH2 distribution and therapeutic efficacy compared to other administration routes of transarterial virus infusion (TAVI), commonly adopted intratumor injection (TI), and intravenous injection (IV). Additionally, TAVE treatment significantly improved the locoregional tumor response, standby effect, and survival benefit compared to the TAVI, transarterial embolization (TAE), and control groups. TAVE modified the immune cell densities for immune-excluded liver cancer, partially destroyed vessel metastases, and established antitumor immune memory. The synergistic treatment efficacy of TAVE was superior to the simple addition of two independent monotherapies. CONCLUSION: TAVE was the optimal and a safe modality for treating immune-excluded liver cancer, and its synergistic effect achieved a remarkable tumor response, standby effect, survival benefit, and antitumor immune memory, which providing an innovative therapeutic modality for clinical practice. DATA AVAILABILITY: Data is available from the corresponding author upon requirement.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas , Animais , Coelhos , Neoplasias Hepáticas/tratamento farmacológico
3.
BMC Med ; 20(1): 376, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36310169

RESUMO

BACKGROUND: The combination of oncolytic viruses (OVs) with immune checkpoint blockades is a research hotspot and has shown good efficacy. Here, we present the first attempt to combine oncolytic herpes simplex virus 2 (OH2) with an anti-SIRPα antibody as an antitumour treatment. Our results provide unique insight into the combination of innate immunity with OV. METHODS: We verified the polarization and activation of OH2 in RAW264.7 cells in vitro. Subsequently, we evaluated the antitumour ability of OH2 and anti-SIRPα combined therapy in a tumour-bearing mouse model. RNA-seq and Single-cell RNA-seq were used to characterize the changes in the tumour microenvironment. RESULTS: The OH2 lysates effectively stimulated RAW264.7 cells to polarize towards the M1 but not the M2 phenotype and activated the function of the M1 phenotype in vitro. In the macrophage clearance experiment, OH2 therapy induced polarization of M1 macrophages and participated in the antitumour immune response in a tumour-bearing mouse model. Treatment with a combination of OH2 and anti-SIRPα effectively inhibited tumour growth and significantly prolonged the survival time of the mice, and this result was more obvious in the mouse model with a larger tumour volume at the beginning of the treatment. These results suggest that combination therapy can more profoundly reshape the TME and activate stronger innate and adaptive immune responses. CONCLUSIONS: Our data support the feasibility of oncolytic virus therapy in combination with anti-SIRPα antibodies and suggest a new strategy for oncolytic virus therapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Vírus Oncolíticos/genética , Microambiente Tumoral , Terapia Viral Oncolítica/métodos , Neoplasias/terapia , Imunidade Inata , Modelos Animais de Doenças
4.
Virol J ; 19(1): 74, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459242

RESUMO

BACKGROUND: Selectively replicating herpes simplex virus-2 (HSV-2) vector is a promising treatment for cancer therapy. The insertion of multiple transgenes into the viral genome has been performed to improve its oncolytic activity. METHODS: Herein, we simultaneously constructed five "armed" oncolytic viruses (OVs), designated oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19. These OVs delete the ICP34.5 and ICP47 genes with the insertion of transgenes into the deleted ICP34.5 locus. The anti-tumor efficacy in vivo was tested in the syngeneic 4T1 and CT26 tumor-bearing mice model. RESULTS: The OVs showed comparable oncolytic capability in vitro. The combination therapy of oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19 exhibited the highest tumor inhibition efficacy compared with the treatment of single OV or two OVs combination. CONCLUSIONS: The OVs armed with different transgenes combination therapy also named 5-valent oHSV2 (also called cocktail therapy) might be an effective therapeutic strategy for solid tumors.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Vetores Genéticos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Herpesvirus Humano 2/genética , Interleucina-12/genética , Interleucina-15/genética , Interleucina-7/genética , Camundongos , Neoplasias/tratamento farmacológico , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
5.
BMC Med ; 19(1): 277, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34763698

RESUMO

BACKGROUND: Gliomas are the most common aggressive cancer in the central nervous system. Considering the difficulty in monitoring glioma response and progression, an approach is needed to evaluate the progression or survival of patients with glioma. We propose an application to facilitate clinical detection and treatment monitoring in glioma patients by using telomerase-positive circulating tumor cells (CTCs) and to further evaluate the relationship between the immune microenvironment and CTCs in glioma patients. METHODS: From October 2014 to June 2017, 106 patients newly diagnosed with glioma were enrolled. We used the telomerase reverse transcriptase CTC detection method to detect and analyze the CTC statuses of glioma patients before and after surgery. FlowSight and FISH confirmed the CTCs detected by the telomerase-based method. To verify the correlation between CTCs and the immune response, peripheral white blood cell RNA sequencing was performed. RESULTS: CTCs were common in the peripheral blood of glioma patients and were not correlated with the pathological classification or grade of patients. The results showed that the presence of postoperative CTCs but not preoperative CTCs in glioma patients was a poor prognostic factor. The level of postoperative CTCs, which predicts a poor prognosis after surgery, may be associated with neutrophils. RNA sequencing suggested that postoperative CTCs were positively correlated with innate immune responses, especially the activation of neutrophils and the generation of neutrophil extracellular traps, but negatively correlated with the cytotoxic response. CONCLUSIONS: Our results showed that telomerase-positive CTCs can predict a poor prognosis of patients with glioma. Our results also showed a correlation between CTCs and the immune macroenvironment, which provides a new perspective for the treatment of glioma.


Assuntos
Glioma , Células Neoplásicas Circulantes , Telomerase , Biomarcadores Tumorais , Glioma/diagnóstico , Humanos , Neutrófilos/metabolismo , Prognóstico , Telomerase/genética , Telomerase/metabolismo , Microambiente Tumoral
6.
J Med Virol ; 92(12): 3617-3627, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31994741

RESUMO

The treatment of tumors with oncolytic viruses is an important cancer immunotherapy strategy. Interleukin-15 (IL-15) can enhance the antitumor effect of natural killer cells and T cells. An oncolytic herpes simplex type II virus (oHSV2-mIL-15CherryFP) expressing mouse IL-15 was constructed using the CRISPR/Cas9 system, and its antitumor activity in vitro and in vivo was evaluated. In vitro, the mouse interleukin-15 (mIL-15) present in the culture supernatant expressed by oHSV2-mIL-15CherryFP was able to enhance the killing of CT26-GFP tumor cells by T cells. In addition, the intratumoral injection of oHSV2-mIL-15CherryFP inhibited tumor growth in the CT26-iRFP and BGC823-iRFP model. These results indicate that the use of oncolytic herpes simplex virus expressing IL-15 may be a potential therapeutic strategy in tumor immunotherapy.

7.
Virol J ; 16(1): 95, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366370

RESUMO

BACKGROUND: Swine-origin virus infection spreading widely could cause significant economic loss to porcine industry. Novel antiviral agents need to be developed to control this situation. METHODS: In this study, we evaluated the activities of five broad-spectrum antimicrobial peptides (AMPs) against several important swine-origin pathogenic viruses by TCID50 assay. Plaque reduction assay and cell apoptosis assay were also used to test the activity of the peptides. Protection effect of piscidin against pseudorabies virus (PRV) was also examined in mouse model. RESULTS: Piscidin (piscidin 1), caerin (caerin 1.1) and maculatin (maculatin 1.1) could inhibit PRV by direct interaction with the virus particles in a dose-dependent manner and they could also protect the cells from PRV-induced apoptosis. Among the peptides tested, piscidin showed the strongest activity against PRV. Moreover, in vivo assay showed that piscidin can reduce the mortality of mice infected with PRV. CONCLUSION: In vitro and in vivo experiments indicate that piscidin has antiviral activity against PRV.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia , Proteínas de Peixes/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Herpesvirus Suídeo 1/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Pseudorraiva/virologia , Organismos Livres de Patógenos Específicos , Replicação Viral/efeitos dos fármacos
8.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 585-595, 2024 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-38369843

RESUMO

This study aimed to measure the duration and replication level of oncolytic herpes simplex virus type 2 (oHSV2) at the tumor injection site in BALB/c mice. Additionally, the expression level of human granulocyte macrophage colony-stimulating factor (hGM-CSF) and HSV-2 antibody in the serum was also measured. High and low doses of oHSV2-Fluc (firefly luciferin, Fluc) were injected into the mice's tumors to track the change and duration of fluorescence expression. The copy number of oHSV2 gene in tumor tissues was determined using quantitative real-time polymerase chain reaction (qPCR). Enzyme linked immunosorbent assay (ELISA) was used to detect the expression of hGM-CSF and HSV-2 antibody in the serum. The tumor volume in the high-dose group was significantly lower than that in the control group (P < 0.01). Intratumor injection of oHSV2-Fluc showed that the carried Fluc could continue to express in the tumor, with fluorescence still detectable at day 11 and declining to undetectable level by day 18. The mRNA expression of oHSV2 was detected in tumor tissues of both high and low dose groups on day 9 using qPCR. ELISA results showed that the levels of HSV2 antibody and hGM-CSF in both high and low dose groups were significantly increased compared to the control group (P < 0.05) after collecting orbital blood. These findings suggest that oHSV2 can replicate in the tumor and sustainably express exogenous factors, thus effectively targeting and killing the tumor. Furthermore, intratumoral injection of oHSV2 resulted in higher levels of hGM-CSF and HSV-2 antibodies found in the mice's serum.


Assuntos
Herpesvirus Humano 2 , Neoplasias , Camundongos , Animais , Humanos , Herpesvirus Humano 2/genética
9.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 458-472, 2024 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-38369833

RESUMO

Solid tumors lack well-defined targets for chimeric antigen receptor T-cell (CAR-T) therapy. Therefore, introducing a known target molecule, CD19, into solid tumor cell lines via lentiviral transduction to investigate the cytotoxicity of CD19 CAR-T cells can potentially support CAR-T cell therapy against solid tumors. In this study, a stable colon cancer CT26 cell line, CT26-CD19-FLUC-GFP, expressing CD19, firefly luciferase (FLUC), and green fluorescent protein (GFP), was constructed using a triple-plasmid lentiviral system. The growth characteristics of this cell line were consistent with those of the CT26 cell line. Subsequent flow cytometry analysis confirmed stable expression of CD19 and GFP in CT26-CD19-FLUC-GFP cells after serial passaging up to the 5th, 10th, and 22nd generations. Further validation revealed significantly higher levels of CD19 mRNA and FLUC expression in CT26-CD19-FLUC-GFP cells continuously passaged up to the 22nd generation compared to the control CT26 cells. In comparison to T cells, CD19 CAR-T cells demonstrated substantial cytotoxicity against CT26-CD19-FLUC-GFP cells and MC38-CD19 cells. One week after intraperitoneal implantation of CT26-CD19-FLUC-GFP cells into mice, FLUC expression in the peritoneal region could be detected. These results indicate the successful establishment of a stable CT26 cell line expressing CD19-FLUC-GFP, which can be specifically targeted by CD19 CAR-T cells.


Assuntos
Receptores de Antígenos Quiméricos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Proteínas de Fluorescência Verde/genética , Luciferases de Vaga-Lume , Linfócitos T/metabolismo , Lentivirus/genética , Linhagem Celular Tumoral
10.
Biomed Pharmacother ; 178: 117060, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053421

RESUMO

BACKGROUND: Due to the size and location of the tumor, incomplete radiofrequency ablation (iRFA) of the target tumor inhibits tumor immunity. In this study, a murine herpes simplex virus (oHSV2-mGM) armed with granulocyte-macrophage colony-stimulating factor (GM-CSF) was constructed to explore its effect on innate and adaptive immunity during iRFA, and the inhibitory effect of programmed cell death-1 (PD1) on tumor. METHODS: We verified the polarization and activation of RAW264.7 cells mediated by oHSV2-mGM in vitro. Subsequently, we evaluated the efficacy of oHSV2-mGM alone and in combination with αPD1 in the treatment of residual tumors after iRFA in two mouse models. RNA-seq was used to characterize the changes of tumor microenvironment. RESULTS: oHSV2-mGM lysate effectively stimulated RAW264.7 cells to polarize into M1 cells and activated M1 phenotypic function. In the macrophage clearance experiment, oHSV2-mGM activated the immune response of tumor in mice. The results in vivo showed that oHSV2-mGM showed better anti-tumor effect in several mouse tumor models. Finally, oHSV2-mGM combined with PD1 antibody can further enhance the anti-tumor effect of oHSV2-mGM and improve the complete remission rate of tumor in mice. CONCLUSION: The application of oHSV2-mGM leads to the profound remodeling of the immune microenvironment of residual tumors. oHSV2-mGM also works in synergy with PD1 antibody to achieve complete remission of tumors that do not respond well to monotherapy at immune checkpoints. Our results support the feasibility of recombinant oncolytic virus in the treatment of residual tumors after iRFA, and propose a new strategy for oncolytic virus treatment of tumors.

11.
Virology ; 595: 110093, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692134

RESUMO

Oncolytic virotherapy stands out as a burgeoning and promising therapeutic paradigm, harnessing the intrinsic cytotoxicity of oncolytic viruses for selective replication and dissemination within tumors. The primary mode of action revolves around the direct eradication of tumor cells. In our previous investigations, we formulated an oncolytic herpes simplex virus type 2 (OH2) and substantiated its anti-tumor efficacy both in vivo and in vitro. Subsequently, we embarked on a phase I/II clinical trial in China (NMPA, 2018L02743) and the USA (FDA, IND 27137) to assess OH2's safety, biodistribution, and anti-tumor activity as a standalone agent in patients with advanced solid tumors. In this investigation, our primary focus was to comprehend the influence of the major capsid protein VP5 of OH2 on its efficacy as an antitumor agent. Our findings underscore that the VP5 protein significantly amplifies OH2's oncolytic impact on A549 cells. Additionally, we observed that VP5 actively promotes the induction of apoptosis in A549 cells, both in vivo and in vitro. Through comprehensive transcriptional sequencing, we further authenticated that the VP5 protein triggers apoptosis-related signaling pathways and Gene Ontology (GO) terms in A549 cells. Moreover, we scrutinized differentially expressed genes in the p53-dependent apoptosis pathway and conducted meticulous in vitro validation of these genes. Subsequently, we delved deeper into unraveling the functional significance of the TP53I3 gene and conclusively affirmed that the VP5 protein induces apoptosis in A549 cells through the TP53I3 gene. These revelations illuminate the underlying mechanisms of OH2's antitumor activity and underscore the pivotal role played by the VP5 protein. The outcomes of our study harbor promising implications for the formulation of effective oncolytic virotherapy strategies in cancer treatment.


Assuntos
Apoptose , Herpesvirus Humano 2 , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Células A549 , Terapia Viral Oncolítica/métodos , Animais , Herpesvirus Humano 2/fisiologia , Herpesvirus Humano 2/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Heliyon ; 10(8): e29939, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699727

RESUMO

In the United States, coronavirus disease 2019 (COVID-19) cases have consistently been linked to the prevailing variant XBB.1.5 of SARS-CoV-2 since late 2022. A system has been developed for producing and infecting cells with a pseudovirus (PsV) of SARS-CoV-2 to investigate the infection in a Biosafety Level 2 (BSL-2) laboratory. This system utilizes a lentiviral vector carrying ZsGreen1 and Firefly luciferase (Fluc) dual reporter genes, facilitating the analysis of experimental results. In addition, we have created a panel of PsV variants that depict both previous and presently circulating mutations found in circulating SARS-CoV-2 strains. A series of PsVs includes the prototype SARS-CoV-2, Delta B.1.617.2, BA.5, XBB.1, and XBB.1.5. To facilitate the study of infections caused by different variants of SARS-CoV-2 PsV, we have developed a HEK-293T cell line expressing mCherry and human angiotensin converting enzyme 2 (ACE2). To validate whether different SARS-CoV-2 PsV variants can be used for neutralization assays, we employed serum from rats immunized with the PF-D-Trimer protein vaccine to investigate its inhibitory effect on the infectivity of various SARS-CoV-2 PsV variants. According to our observations, the XBB variant, particularly XBB.1.5, exhibits stronger immune evasion capabilities than the prototype SARS-CoV-2, Delta B.1.617.2, and BA.5 PsV variants. Hence, utilizing the neutralization test, this study has the capability to forecast the effectiveness in preventing future SARS-CoV-2 variants infections.

13.
Cancer Lett ; 589: 216834, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537773

RESUMO

Glioblastoma (GBM), the deadliest central nervous system cancer, presents a poor prognosis and scant therapeutic options. Our research spotlights OH2, an oncolytic viral therapy derived from herpes simplex virus 2 (HSV-2), which demonstrates substantial antitumor activity and favorable tolerance in GBM. The extraordinary efficacy of OH2 emanates from its unique mechanisms: it selectively targets tumor cells replication, powerfully induces cytotoxic DNA damage stress, and kindles anti-tumor immune responses. Through single-cell RNA sequencing analysis, we discovered that OH2 not only curtails the proliferation of cancer cells and tumor-associated macrophages (TAM)-M2 but also bolsters the infiltration of macrophages, CD4+ and CD8+ T cells. Further investigation into molecular characteristics affecting OH2 sensitivity revealed potential influencers such as TTN, HMCN2 or IRS4 mutations, CDKN2A/B deletion and IDO1 amplification. This study marks the first demonstration of an HSV-2 derived OV's effectiveness against GBM. Significantly, these discoveries have driven the initiation of a phase I/II clinical trial (ClinicalTrials.gov: NCT05235074). This trial is designed to explore the potential of OH2 as a therapeutic option for patients with recurrent central nervous system tumors following surgical intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Glioblastoma/genética , Glioblastoma/terapia , Linfócitos T CD8-Positivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
14.
Cancer Med ; 12(12): 13573-13585, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199371

RESUMO

OBJECTIVE: In order to ensure the stable transcription of target genes, we constructed a eukaryotic high expression vector carrying an immune-check inhibitor PD-1v and a variety of cytokines, and studied their effects on activating immune response to inhibit tumor growth. METHODS: A novel eukaryotic expression plasmid vector named pT7AMPCE containing T7RNA polymerase, T7 promoter, internal ribosome entry site (IRES), and poly A tailing signal was constructed by T4 DNA ligase, on which homologous recombination was used to clone and construct the vector carrying PD-1v, IL-2/15, IL-12, GM-CSF, and GFP. In vitro transfection of CT26 cells was performed, and the protein expression of PD-1v, IL-12 and GM-CSF was detected by Western blot and ELISA after 48 h. Mice were subcutaneously inoculated with CT26-IRFP tumor cells in the rib abdomen, and the tumor tissues were injected with PD-1v, IL-2/15, IL-12, and GM-CSF recombinant plasmids for treatment during the experimental period. The efficacy of the treatment was evaluated by assay tumor size and survival time of tumor-bearing mice during the experiment. Expression levels of IFN-γ, TNF, IL-4, IL-2, and IL-5 in mouse blood were measured using the CBA method. Tumor tissues were extracted and immune cell infiltration in tumor tissues was detected by HE staining and the IHC method. RESULTS: The recombinant plasmids carrying PD-1v, IL-2/15, IL-12, and GM-CSF were successfully constructed, and the Western blot and ELISA results showed that PD-1v, IL-12, and GM-CSF were expressed in the supernatant of CT26 cells 48 h after in vitro cell transfection. The combined application of PD-1v, IL-2/15, IL-12, and GM-CSF recombinant plasmids significantly inhibited tumor growth in mice, and the tumor growth rate was significantly lower than that in the blank control group and GFP plasmid control group (p < 0.05). Cytometric bead array data suggested that the combination of PD-1v and various cytokines can effectively activate immune cells. HE and IHC analysis revealed plenty of immune cell infiltrates in the tumor tissue, and a large proportion of tumor cells showed the necrotic phenotype in the combination treatment group. CONCLUSION: The combination of immune check blockade and multiple cytokine therapy can significantly activate the body's immune response and inhibit tumor growth.


Assuntos
Marcação de Genes , Vetores Genéticos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Imunidade , Interleucina-12 , Neoplasias , Receptor de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1/genética , Animais , Camundongos , Regiões Promotoras Genéticas , RNA Polimerases Dirigidas por DNA/genética , Proteínas Virais/genética , Interleucina-12/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Feminino , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Neoplasias/imunologia , Neoplasias/terapia , Transfecção , Imunidade/genética , Marcação de Genes/métodos , Proteínas de Fluorescência Verde
15.
Int Immunopharmacol ; 124(Pt B): 110975, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757634

RESUMO

Oncolytic virotherapy is an emerging and safe therapeutic approach based on the inherent cytotoxicity of oncolytic viruses and their ability to replicate and spread within tumors in a selective manner. We constructed a new type of oncolytic herpes simplex virus armed with Bispecific Antibody (BsAb) molecules targeting PD-L1/CD3 (oHSV2-PD-L1/CD3-BsAb) to treat human malignancies. We demonstrated the anti-tumor efficacy of oHSV2-PD-L1/CD3-BsAb. To move forward with clinical trials of oHSV2-PD-L1/CD3-BsAb, we conducted a comprehensive preclinical safety evaluation, including hemolysis test, anaphylaxis test, repeated dose toxicity test in cynomolgus monkeys, biodistribution in cynomolgus monkeys and tissue cross-reactivity of PD-L1/CD3-BsAb with human and cynomolgus monkey tissues in vitro. Our preclinical safety evaluation indicated that oHSV2-PD-L1/CD3-BsAb is safe and suitable for clinical trials. After undergoing a thorough evaluation by the United States Food and Drug Administration (FDA), oHSV2-PD-L1/CD3-BsAb has successfully obtained approval to initiate Phase I clinical trials in the United States (FDA IND: 28717).


Assuntos
Anticorpos Biespecíficos , Neoplasias , Terapia Viral Oncolítica , Animais , Humanos , Herpesvirus Humano 2 , Macaca fascicularis , Distribuição Tecidual , Antígeno B7-H1 , Anticorpos Biespecíficos/uso terapêutico , Neoplasias/tratamento farmacológico
16.
NPJ Vaccines ; 8(1): 38, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922524

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had and continues to have a significant impact on global public health. One of the characteristics of SARS-CoV-2 is a surface homotrimeric spike protein, which is primarily responsible for the host immune response upon infection. Here we present the preclinical studies of a broadly protective SARS-CoV-2 subunit vaccine developed from our trimer domain platform using the Delta spike protein, from antigen design through purification, vaccine evaluation and manufacturability. The pre-fusion trimerized Delta spike protein, PF-D-Trimer, was highly expressed in Chinese hamster ovary (CHO) cells, purified by a rapid one-step anti-Trimer Domain monoclonal antibody immunoaffinity process and prepared as a vaccine formulation with an adjuvant. Immunogenicity studies have shown that this vaccine candidate induces robust immune responses in mouse, rat and Syrian hamster models. It also protects K18-hACE2 transgenic mice in a homologous viral challenge. Neutralizing antibodies induced by this vaccine show cross-reactivity against the ancestral WA1, Delta and several Omicrons, including BA.5.2. The formulated PF-D Trimer is stable for up to six months without refrigeration. The Trimer Domain platform was proven to be a key technology in the rapid production of PF-D-Trimer vaccine and may be crucial to accelerate the development and accessibility of updated versions of SARS-CoV-2 vaccines.

17.
BMC Cancer ; 12: 549, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23176143

RESUMO

BACKGROUND: The primary objective of this study was to test whether oncolytic herpes simplex virus type 1 (HSV1) could eradicate chemoresistant cancer stem cells (CSCs). METHODS: The fluorescent aldefluor reagent-based technique was used to identify and isolate ALDH(br) cells as CSCs from the 4T1 murine breast cancer cell line. The presence of ALDH(br) 4T1 cells was also examined in 4T1 breast cancer transplanted in immune-competent syngeneic mice. RESULTS: Compared with ALDH(lo) cells, ALDH(br) cells had a markedly higher ability to form tumor spheres in vitro and a higher tumorigenic potential in vivo. ALDH(br) cells also exhibited increased doxorubicin resistance in vitro, which correlated with a selective increase in the percentage of ALDH(br) cells after doxorubicin treatment and an increased expression of P-glycoprotein (P-gp), a known chemoresistance factor. In contrast, oncolytic HSV1 was able to kill ALDH(br) cells in vitro and even more markedly in vivo. Furthermore, in in vivo studies, systemic administration of doxorubicin followed by intratumoral injection of oncolytic HSV1 resulted in much more significant suppression of tumor growth with increased median survival period compared with each treatment given alone (p<0.05). Though more CD8(+) T lymphocytes were induced by oncolytic HSV1, no significant specific T cell response against CSCs was detected in vivo. CONCLUSIONS: These results suggested that the use of oncolytic HSV1 following doxorubicin treatment may help eradicate residual chemoresistant CSCs in vivo.


Assuntos
Neoplasias da Mama/terapia , Células-Tronco Neoplásicas , Terapia Viral Oncolítica/métodos , Aldeído Desidrogenase/análise , Aldeído Desidrogenase/biossíntese , Animais , Antineoplásicos/uso terapêutico , Western Blotting , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Feminino , Citometria de Fluxo , Herpesvirus Humano 1 , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/enzimologia , Vírus Oncolíticos
18.
Zhonghua Zhong Liu Za Zhi ; 34(12): 894-8, 2012 Dec.
Artigo em Zh | MEDLINE | ID: mdl-23336374

RESUMO

OBJECTIVE: To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). METHODS: Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. RESULTS: HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. CONCLUSION: Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Células Neoplásicas Circulantes/patologia , Simplexvirus/metabolismo , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Células Neoplásicas Circulantes/metabolismo , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Células Vero
19.
Zhonghua Zhong Liu Za Zhi ; 34(2): 89-95, 2012 Feb.
Artigo em Zh | MEDLINE | ID: mdl-22780924

RESUMO

OBJECTIVE: The aim of this study was to construct a new oncolytic virus oHSV2hGM-CSF and evaluate its oncolytic activity in vitro and in vivo in parallel with oHSV1hGM-CSF. METHODS: oHSV2hGM-CSF was a replication-competent, attenuated HSV2 based on the HG52 virus (an HSV2 strain). It was engineered to be specific for cancer by deletion of the viral genes ICP34.5 and ICP47 and insertion of the gene encoding hGM-CSF. To measure the in vitro killing effect of the virus, 15 human tumor cell lines (HeLa, Eca-109, PG, HepG2, SK/FU, CNE-2Z, PC-3, SK-OV3, A-549, 786-0, MCF-7, Hep-2, HT-29, SK-Mel-28, U87-MG) and mouse melanoma (B16R) cell line were seeded into 24-well plates and infected with viruses at MOI = 1 (multiplicity of infection, MOI), or left uninfected. The cells were harvested 24 and 48 hours post infection, and observed under the microscope. For animal studies, the oncolytic viruses were administered intratumorally (at 3-day interval) at a dose of 2.3 x 10(6) PFU (plaque forming unit, PFU) for three times when the tumor volume reached 7-8 mm3. The tumor volume was measured at 3-day intervals and animal survival was recorded. RESULTS: Both oHSV2hCM-CSFand oHSV1hGM-CSF induced widespread cytopathic effects at 24 h after infection. OHSV2hGM-CSF, by contrast, produced more plaques with a syncytial phenotype than oHSV1hGM-CSF. In the in vitro killing experiments for the cell lines HeLa, HepG2, SK-Mel-28, B16R and U87-MG, oHSV2hGM-CSF eradicated significantly more cells than oHSV1hGM-CSF under the same conditions. For the mouse experiments, it was observed that oHSV2hGM-CSF significantly inhibited the tumor growth. At 15 days after B16R tumor cells inoculation, the tumor volumes of the PBS, oHSV1hGCM-CSF and oHSV2hGM-CSF groups were (374.7 +/- 128.24) mm3, (128.23 +/- 45.32) mm3 (P < 0.05, vs. PBS group) or (10.06 +/- 5.1) mm3 (P < 0.01, vs. PBS group), respectively (mean +/- error). The long term therapeutic effect of oHSV2hGM-CSF on the B16R animal model was evaluated by recording animal survival over 110 days after tumor cells inoculation whereas all the mice in the PBS group died by day 22 (P < 0.01). The anti-tumor mechanism of the newly constructed oHSV2hGM-CSF against B16R cell tumor appeared to include the directly oncolytic activity and the induction of anti-tumor immunity to some degree. CONCLUSION: The findings of our study demonstrate that the newly constructed oHSV2hGM-CSF has potent anti-tumor activity in vitro to many tumor cell lines and in vive to the transplanted B16R tumor models.


Assuntos
Herpesvirus Humano 2/genética , Melanoma Experimental/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Animais , Linhagem Celular Tumoral , Feminino , Deleção de Genes , Engenharia Genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Herpesvirus Humano 2/imunologia , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/virologia , Camundongos , Camundongos Endogâmicos C57BL , Vírus Oncolíticos/fisiologia , Distribuição Aleatória , Carga Tumoral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Zhonghua Zhong Liu Za Zhi ; 34(3): 187-91, 2012 Mar.
Artigo em Zh | MEDLINE | ID: mdl-22780971

RESUMO

OBJECTIVE: To generate an oncolytic herpes simplex virus (oHSV) permissive mouse melanoma cell line B16RHSV, preserving the tumorigenic ability in syngeneic mice. METHODS: The herpes simplex virus entry mediator (HVEM) gene was amplified by PCR from human melanoma cell line A375, and cloned into pGEM-T Easy vector for sequencing. The HVEM gene was then cloned into pcDNA3 vector to generate pcDNA3-HVEM for transfection of mouse melanoma cell line B16-F10 cells. After that, the putative transfected cells were selected in full growth medium containing G418. The HVEM-expressing cells were isolated by immunomagnetic bead separation. The mouse melanoma cell line expressing oHSV receptor-HVEM, designated as B16RHSV, was generated. The permissibility of B16RHSV cells to oHSV infection was examined with green fluorescence protein (GFP)-expressing oHSV (oHSVGFP). To investigate the tumorigenic ability of both cells in vivo, 2×10(5) cells in 100 µl were subcutaneously inoculated into the right flanks of C57/BL mice. RESULTS: In vitro, the B16RHSV mouse melanoma cells were shown by fluorescence microscopy capable of being infected by oHSVGFP. In vivo, the B16RHSV cells, like their wild type counterpart, grew to form melanoma in syngeneic mice. CONCLUSION: A herpes simplex virus-permissive mouse melanoma cell line was established. Its tumorigenicity remained unchanged.


Assuntos
Linhagem Celular Tumoral , Herpesvirus Humano 1 , Melanoma/patologia , Melanoma/virologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Animais , Feminino , Amplificação de Genes , Vetores Genéticos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Plasmídeos , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transfecção , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA