RESUMO
Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.
Assuntos
Espectrometria de Massas por Ionização por Electrospray , Éteres de Coroa/química , Calixarenos/química , Paládio/química , Zinco/química , Fulerenos/química , Estrutura MolecularRESUMO
The structural dynamics of artificial assemblies, in aspects such as molecular recognition and structural transformation, provide us with a blueprint to achieve bioinspired applications. Here, we describe the assembly of redox-switchable chiral metal-organic cages Λ8/Δ8-[Pd6(CoIIL3)8]28+ and Λ8/Δ8-[Pd6(CoIIIL3)8]36+. These isomeric cages demonstrate an on-off chirality logic gate controlled by their chemical and stereostructural dynamics tunable through redox transitions between the labile CoII-state and static CoIII-state with a distinct Cotton effect. The transition between different states is enabled by a reversible redox process and chiral recognition originating in the tris-chelate Co-centers. All cages in two states are thoroughly characterized by NMR, ESI-MS, CV, CD, and X-ray crystallographic analysis, which clarify their redox-switching behaviors upon chemical reduction/oxidation. The stereochemical lability of the CoII-center endows the Λ8/Δ8-CoII-cages with efficient chiral-induction by enantiomeric guests, leading to enantiomeric isomerization to switch between Λ8/Δ8-CoII-cages, which can be stabilized by oxidation to their chemically inert forms of Λ8/Δ8-CoIII-cages. Kinetic studies reveal that the isomerization rate of the Δ8-CoIII-cage is at least an order of magnitude slower than that of the Δ8-CoII-cage even at an elevated temperature, while its activation energy is 16 kcal mol-1 higher than that of the CoII-cage.
RESUMO
Afterglow materials have garnered significant interest due to distinct photophysical characteristics. However, it is still difficult to achieve long afterglow phosphorescence from organic molecules due to aggregation-caused quenching (ACQ) and energy dissipation. In addition, most materials reported so far have long afterglow emission only at room or even low temperatures, and mainly use UV light as an excitation source. In this work, we report a strategy to achieve high temperature long afterglow emission through the assembly of isolated 0D metal-organic cages (MOCs). In which, both ACQ and phosphorescence quenching effects are effectively mitigated by altering the stacking mode of organic chromophores through orthogonally anchoring into the edges of cubic MOCs. Furthermore, improvement in molecular rigidity, promotion of spin-orbit coupling and broadening of the absorption range are achieved through the MOC- engineering strategy. As a result, we successfully synthesized MOCs that can produce afterglow emission even after excitation by WLEDs at high temperatures (380 K). Moreover, the MOCs are capable of generating afterglow emissions when excited by mobile phone flashlight at room temperature. Given these features, the potential applications of MOCs in the visual identification of explosives, information encryption and multicolor display are explored.
RESUMO
A series of isostructural supramolecular cages with a rhombic dodecahedron shape have been assembled with distinct metal-coordination lability (M8 Pd6 -MOC-16, M=Ru2+ , Fe2+ , Ni2+ , Zn2+ ). The chirality transfer between metal centers generally imposes homochirality on individual cages to enable solvent-dependent spontaneous resolution of Δ8 /Λ8 -M8 Pd6 enantiomers; however, their distinguishable stereochemical dynamics manifests differential chiral phenomena governed by the cage stability following the order Ru8 Pd6 >Ni8 Pd6 >Fe8 Pd6 >Zn8 Pd6 . The highly labile Zn centers endow the Zn8 Pd6 cage with conformational flexibility and deformation, enabling intrigue chiral-Δ8 /Λ8 -Zn8 Pd6 to meso-Δ4 Λ4 -Zn8 Pd6 transition induced by anions. The cage stabilization effect differs from inert Ru2+ , metastable Fe2+ /Ni2+ , and labile Zn2+ , resulting in different chiral-guest induction. Strikingly, solvent-mediated host-guest interactions have been revealed for Δ8 /Λ8 -(Ru/Ni/Fe)8 Pd6 cages to discriminate the chiral recognition of the guests with opposite chirality. These results demonstrate a versatile procedure to control the stereochemistry of metal-organic cages based on the dynamic metal centers, thus providing guidance to maneuver cage chirality at a supramolecular level by virtue of the solvent, anion, and guest to benefit practical applications.
RESUMO
Molecular recognition lies at the heart of biological functions, which inspires lasting research in artificial host syntheses to mimic biomolecules that can recognize, process, and transport molecules with the highest level of complexity; nonetheless, the design principle and quantifying methodology of artificial hosts for multiple guests (≥4) remain a formidable task. Herein, we report two rhombic dodecahedral cages [(Zn/Fe)8Pd6-MOC-16], which embrace 12 adaptive pockets for multiguest binding with distinct conformational dynamics inherent in metal-center lability and are able to capture 4-24 guests to manifest a surprising complexity of binding scenarios. The exceptional high-order and hierarchical encapsulation phenomena suggest a wide host-guest dynamic-fit, enabling conformational adjustment and adaptation beyond the duality of induced-fit and conformational selection in protein interactions. A critical inspection of the host-guest binding events in solution has been performed by NMR and ESI-MS spectra, highlighting the importance of acquiring a reliable binding repertoire from different techniques and the uncertainty of quantifying the binding affinities of multiplying guests by an oversimplified method.
Assuntos
Biomimética , Conformação MolecularRESUMO
In this study, the physicochemical and photocatalytic properties of two kinds of stannate perovskite oxides (MgSnO3 and CaSnO3) were investigated under simulated sunlight, where dimethyl phthalate (DMP) and diethyl phthalate (DEP) were selected as the probe pollutants. The results of photochemical characterization showed that MgSnO3 perovskite exhibited better photocatalytic performance than CaSnO3 perovskite. MgSnO3 perovskite could effectively degrade 75% of DMP and 79% of DEP through pseudo-first-order reaction kinetics, which remained good in pH 3.0 to 9.0. Quenching experiments and electron paramagnetic resonance (EPR) characterization indicated that photogenerated holes (h+), superoxide (O2-), and hydroxyl radicals (OH) worked in the photo-degradation, while O2- played the most important role. Furthermore, intermediates identification and density functional theory (DFT) calculations were used to explore the degradation mechanism. For both DMP and DEP, the reactive oxygen species (ROS, including O2- and OH) were responsible for the hydroxylation of benzene ring and the breaking of the aliphatic chain, while h+ was prone to break the aliphatic chain. This work is expected to provide new insights on the photocatalytic mechanism of stannate perovskites for environmental remediation.
Assuntos
Ésteres , Ácidos Ftálicos , Compostos de Cálcio , Teoria da Densidade Funcional , Óxidos , TitânioRESUMO
BACKGROUND: Cryptochrome 1 (cry1), the core regulator of the circadian clock, is essential for ontogeny and mammalian reproduction. Unlike in other tissues, the cry1 gene have noncircadian functions in spermatogenesis, which implies the unique role of cry1 gene in the development of testis. The role of cry1 during the puberty has not been described yet. This study aimed to explore the relationship between cry1 expression and spermatogenic cell numbers. METHODS AND RESULTS: We analyzed testicular tissues from Hu sheep aged 0-180 days by hematoxylin and eosin staining, measured cry1 and cell proliferation regulatory factors (bricd5, tnfrsf21, cdk1) expression by quantitative real-time PCR and characterized the transcription factor in the 5' flanking region of cry1 gene. The data revealed that the number of spermatocytes and early spermatocytes increased rapidly from 90 to 120 dpp (day postpartum). Correspondingly, there was a marked variation in the cry1 and cell proliferation related genes (bricd5, tnfrsf21, cdk1) mRNA expression in the testes from the age of 90 days to 180 days (p < 0.05). We also identified some transcription factors (tcfl5) related to cell proliferation. CONCLUSIONS: There is a significant causal relationship between the transcription level of cry1 gene in Hu sheep testes and the number of spermatogenic cells. It is speculated that cry1 gene may regulate the proliferation of spermatogenic cells by regulating the expression of cell proliferation related genes such as bricd5, tnfrsf21 and cdk1.
Assuntos
Proteína Quinase CDC2/genética , Criptocromos/genética , Receptores do Fator de Necrose Tumoral/genética , Maturidade Sexual , Espermatogênese , Testículo/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Ovinos , Espermatócitos/metabolismo , Espermatócitos/fisiologia , Testículo/crescimento & desenvolvimento , Testículo/fisiologiaRESUMO
Seasonal breeding is widespread in sheep and significantly affects the development of the housed sheep industry. To improve and balance the reproduction performance of sheep, year-round breeding has the goal of modern sheep farming. The tryptophan hydroxylase (TPH), which initiates and regulates biosynthesis of melatonin, is an important player in the formation of mammalian year-round breeding. However, little is known about its role in regulation of sheep seasonal breeding. In this study, a missense mutation, T865G in TPH1 gene was detected in 328 individuals of six Mongolian sheep groups. It was positively selected among Mongolian sheep. This mutation may appear between 13,683 and 350,973 years ago and only exist in Hu sheep now. In Hu sheep, the frequency of allele T was 89.66%, and that of allele G was 10.34%. The TPH1 protein structure and property analysis suggested that this mutation from T to G affect the three-dimensional structure and reduce the hydropathicity of catalytic core. When the allele is T, the protein activity is twice that of the allele G, and their difference was significant (p < .05). In conclusion, T865G is an ancient mutation of TPH1 gene and affects the function of TPH protein, which may contribute to the genetic potentiality of Mongolian sheep to year-round breeding.
Assuntos
Reprodução/fisiologia , Ovinos/genética , Triptofano Hidroxilase/genética , Animais , Mutação de Sentido Incorreto/genética , Triptofano Hidroxilase/químicaRESUMO
Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination-driven self-assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06â mg g-1 ). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host-guest binding interactions at crystallographic resolution.
RESUMO
BACKGROUND: The microscopic process of postnatal testicular development in early-puberty animals is poorly understood. Therefore, in this study, 21 male Yiling goats with average ages of 0, 30, 60, 90, 120, 150 and 180 days old (each age group comprised three goats) were used to study the changes in organs, tissues and transcriptomes during postnatal testicle development to obtain a broad and deep insight into the dynamic process of testicular transition from growth to spermatogenesis in early-puberty animals. RESULTS: The inflection point of testicular weight was at 119 days postpartum (dpp), and the testicular weight increased rapidly from 119 dpp to 150 dpp. Spermatozoa were observed in the testis at 90 dpp by using haematoxylin-eosin staining. We found from the transcriptome analysis of testes that the testicular development of Yiling goat from birth to 180 dpp experienced three stages, namely, growth, transition and spermatogenesis stages. The goats in the testicular growth stage (0-60 dpp) showed a high expression of growth-related genes in neurogenesis, angiogenesis and cell junction, and a low expression of spermatogenesis-related genes. The goats aged 60-120 dpp were in the transitional stage which had a gradually decreased growth-related gene transcription levels and increased spermatogenesis-related gene transcription levels. The goats aged 120-180 dpp were in the spermatogenesis stage. At this stage, highly expressed spermatogenesis-related genes, downregulated testicular growth- and immune-related genes and a shift in the focus of testicular development into spermatogenesis were observed. Additionally, we found several novel hub genes, which may play key roles in spermatogenesis, androgen synthesis and secretion, angiogenesis, cell junction and neurogenesis. Moreover, the results of this study were compared with previous studies on goat or other species, and some gene expression patterns shared in early-puberty mammals were discovered. CONCLUSIONS: The postnatal development of the testis undergoes a process of transition from organ growth to spermatogenesis. During this process, spermatogenesis-related genes are upregulated, whereas neurogenesis-, angiogenesis-, cell junction-, muscle- and immune-related genes are downregulated. In conclusion, the multipathway synergy promotes testicular transition from growth to spermatogenesis in early-puberty goats and may be a common rule shared by mammals.
Assuntos
Puberdade/fisiologia , Espermatogênese , Testículo/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica no Desenvolvimento , Cabras , Masculino , Testículo/fisiologia , Fatores de TempoRESUMO
Presented herein are the AlIII molecular ring architectures from 8-ring to 16-ring. Although there are numerous reported cyclic coordination compounds based on transition metals, gallium, or lanthanides, the Al versions are less developed due to the fast hydrolysis nature of Al3+ ion. With the assistant of monohydric alcohols, a series of atomic precisely Al molecular rings based on benzoates are synthesized. The ring expansion of these Al-rings from 8-ring to 16-ring is related to the monohydric alcohol structure-directing agents. Moreover, the organic ligands on the Al-rings can be modified by using various benzoate derivatives, which lead to tunable surface properties of the Al-rings from hydrophilicity to ultra-hydrophobicity. Importantly, 4-aminobenzoic acid bridged 16-ring is soluble in organic solvents and exhibits high solution stability revealed by mass spectroscopy. Ligand substitution also can be performed between these Al-rings, which reveal controllable ligand functionalization of these Al-rings.
RESUMO
The reproductive rhythm undergoes several changes during the evolution of mammals to adapt to local environmental changes. Although the critical roles of melatonin (MLT) in the formation of reproductive rhythm have been well established, the genetic basis for the changes of reproductive rhythm remains uncertain. Here, we constructed the phylogenetic trees of 13 melatonin synthesis, metabolism and receptor genes, estimated their divergence times, and calculated their selection pressures. Then, we evaluated the effect of positively selected and functionally related mutations on protein activity. Our results showed that there were significant positive selection sites in the three major genes, including tryptophan hydroxylase 1 (TPH1), tryptophan hydroxylase 2 (TPH2) and indoleamine-2,3-dioxygenase 1 (IDO1) that are involved in melatonin synthesis, metabolism and function. At the protein level, amino acids at the 442nd site of TPH1 protein and the 194th, 286th, 315th and 404th sites of IDO1 protein were under positive selection, and the variants of the amino acid in these sites might lead to the changes in protein function. Remarkably, the 442nd site of these positive selection sites is in the tetramerization domain of TPH1 protein, and it is proline or leucine. At this site, 89.5% of the amino acid of non-seasonal reproducing mammals was proline, while that of 88.9% of seasonal reproducing mammals was leucine. This variation of the amino acid was derived from the T/C polymorphism at the 1325th site of the TPH1 gene coding sequence, which significantly altered the TPH1 activity (p < 0.01). Interestingly, the predicted age of the allele C in the mammalian genome appeared about 126.6 million years ago, and allele T appeared about 212.6 million years ago, indicating that the evolution of the TPH1 gene was affected by the two mammalian split events and the K-T extinction event. In conclusion, the T/C polymorphism at the 1325th site in the TPH1 gene coding sequence altered TPH1 activity, suggesting that this polymorphism is consistent with the reproductive rhythm of mammals.
Assuntos
Evolução Molecular , Melatonina/genética , Reprodução/genética , Seleção Genética , Triptofano Hidroxilase/genética , Alelos , Animais , Ritmo Circadiano/genética , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Mamíferos/genética , Mamíferos/fisiologia , Melatonina/biossíntese , Melatonina/metabolismo , Mutação , Filogenia , Polimorfismo Genético , Conformação Proteica , Receptores de Melatonina/genética , Reprodução/fisiologia , Triptofano Hidroxilase/químicaRESUMO
Quasi-static ultrasound elastography is an emerging diagnostic imaging modality for determining the stiffness of pathologically changed soft tissues, which do not show significant differences in acoustic impedance for B-mode imaging. Although some methods were applied to improve the signal-to-noise ratio (SNRe) and contrast-to-noise ratio (CNRe) of the constructed elastogram, nonuniform strain distribution at the internal boundary of a hard inclusion, even with the uniform displacement on the surface, is an inherent mechanical effect and results in distortion at the detected lesion boundary. To overcome such stress concentrations, a new elastographic modality was proposed, where the elastograms from different angles throughout 360° were compounded. The strain field and subsequent ultrasound images were calculated using the finite element method (FEM) and Field II, respectively, from which the elastograms were constructed. The performance of complete angular compound elastography with varied interval angles, lesion sizes, and ratios of Young's moduli of the lesion to the background was simulated and compared with that of conventional axial strain elastography. It is found that viewing the lesion from only about 10 angles (interval of 36°) would significantly improve the image quality of elastogram (increasing SNRe by at least 13% and CNRe by at least 5.8 dB), reduce the lesion distortion in the lateral direction, and enhance the sensitivity, resolution, and accuracy of lesion detection. A preliminary phantom study showed similar improvements. Altogether, complete angular compound elastography improves the elastogram quality and reduces the mechanical effects in lesion detection.
RESUMO
Ahead of Print article withdrawn by publisher.
RESUMO
With the rapid growth of the gig economy in China, millions of food delivery e-bikers are making their living by rushing on the street. Speeding is one of their most common risky riding behaviours, leading to severe traffic crashes. Based on 2-month naturalistic cycling data of 46 full-time food delivery e-bikers in Changsha, their speeding behaviour is deeply studied with the individual daily speeding proportion being taken as the speeding indicator. A beta regression model is built to identify the factors significantly influencing the indicator. The estimation results reveal that female riders, middle-aged riders and riders with a bachelor's degree are less likely to engage in speeding. The same result is indicated for those working longer or experiencing more crashes. Additionally, holidays and riding distance are found to have significantly positive influences. Finally, some countermeasures are proposed to prevent speeding among food delivery e-bikers.
RESUMO
Background: Diabetes self-management education (DSME) provides diabetic patients with knowledge of diabetes, requires attention and recording of dietary habits, and increases the frequency and accuracy of blood glucose monitoring. DSME also achieves better blood glucose control, thus benefiting diabetic patients and reducing the risk of diabetes complications. However, few studies have systematically examined whether DSME follows AADE 7 Self-Care Behaviors (AADE7™). Therefore, this study aimed to investigate the control effect of AADE7™-based management on laboratory test indicators of diabetic patients. Methods: The patients with diabetes who received shared care management in our hospital between June 2014 and April 2022 were analyzed retrospectively. According to the process of outpatient consultation, each patient received health education provided by diabetes education nurses and dietitians after consultation. Health education was a process from assessment to health guidance. The basic information of all patients was recorded, and AADE7™ behavior assessment and health education session were conducted through interviews. A total of 13,650 were given shared care management, requiring more than 6 follow-up visits per year, as well as health education. It was reassessed annually according to AADE standards. The impact of the patients' behavior change after the AADE7™-based management on the relevant test indicators was observed. Results: After eight years of intervention, a total of 8319 samples were obtained after excluding the outliers. Stepwise regression analysis was performed, and the results showed that, with other conditions held constant, a greater number of days per week to follow a healthy diet, to take hypoglycemic medication as prescribed, to monitor blood glucose, and to exercise and higher education level were associated with lower levels of glycosylated hemoglobin. The change from drinking to nondrinking was associated with lower triglycerides. If low blood glucose was monitored, patients who reviewed and took immediate action showed lower levels of low-density lipoprotein, urine microalbumin, and urine microalbumin/creatinine ratio compared with those without review and immediate action. Significance tests for each term showed P value <0.05. Conclusions: The AADE7™ framework is a tool supporting patient-centered self-management and education. In the AADE7™ standards, successful self-management is considered as a key outcome in the care of patients with diabetes and related diseases. This tool can effectively improve patient compliance and increase the rate of blood glucose compliance rates in patients with diabetes and therefore is worthy of clinical promotion.
RESUMO
Electrochemical water splitting offers a most promising pathway for "green hydrogen" generation. Even so, it remains a struggle to improve the electrocatalytic performance of non-noble metal catalysts, especially bifunctional electrocatalysts. Herein, aiming to accelerate the hydrogen and oxygen evolution reactions, an oxygen-bridged cobalt-chromium (Co-O-Cr) dual-sites catalyst anchored on cobalt phosphide synthesized through MOF-mediation are proposed. By utilizing the filling characteristics of 3d orbitals and modulated local electronic structure of the catalytic active site, the well-designed catalyst requires only an external voltage of 1.53 V to deliver the current density of 20 mA cm-2 during the process of water splitting apart from the superb HER and OER activity with a low overpotential of 87 and 203 mV at a current density of 10 mA cm-2 , respectively. Moreover, density functional theory (DFT) calculations are utilized to unravel mechanistic investigations, including the accelerated adsorption and dissociation process of H2 O on the Co-O-Cr moiety surface, the down-shifted d-band center, a lowered energy barrier for the OER and so on. This work offers a design direction for optimizing catalytic activity toward energy conversion.
RESUMO
The motivation for making heterometallic compounds stemmed from their emergent synergistic properties and enhanced capabilities for applications. However, the atomically precisely controlled synthesis of heterometallic compounds remains a daunting challenge of the complications that arise when applying several metals and linkers. Herein, a stepwise and controlled method is reported for the accurate addition of second and third metals to homometallic aluminum macrocycles based on the synergistic coordination and hard-soft acid-base theory. These heterometallic compounds showed a good Lewis acid catalytic effect, and the addition of hetero-metals significantly improved the catalytic effect and rate, among that the conversion rate of compound AlOC-133 reached 99.9% within half an hour. This method combines both the independent controllability of stepwise assembly with the universality of one-step methods. Based on the large family of clusters, the establishment of this method paves the way for the controllable and customized molecular-level synthesis of heterometallic materials and creates materials customized for preferential application.
RESUMO
This investigation provides a comprehensive analysis of genomic diversity and selection signatures in Zaobei beef cattle, an indigenous breed known for its adaptation to hot and humid climates and superior meat quality. Whole-genome resequencing was conducted on 23 Zaobei cattle, compared with 46 Simmental cattle to highlight genetic distinctions. Population structure analysis confirmed the genetic uniqueness of Zaobei cattle. Using methods such as DASDC v1.01, XPEHH, and θπ ratio, we identified 230, 232, and 221 genes through DASDC, including hard sweeps, soft sweeps, and linkage sweeps, respectively. Coincidentally, 109 genes were identified when using XPEHH and θπ ratio methods. Together, these analyses revealed eight positive selection genes (ARHGAP15, ZNF618, USH2A, PDZRN4, SPATA6, ROR2, KCNIP3, and VWA3B), which are linked to critical traits such as heat stress adaptation, fertility, and meat quality. Moreover, functional enrichment analyses showed pathways related to autophagy, immune response, energy metabolism, and muscle development. The comprehensive genomic insights gained from this study provide valuable knowledge for breeding programs aimed at enhancing the beneficial traits in Zaobei cattle.
RESUMO
Hatchery rearing significantly influences the phenotypic development of fish, with potential adverse effects for the post-release performance of hatchery-reared individuals in natural environments, especially when targeted for stock enhancement. To assess the suitability of releasing hatchery-reared fish, a comprehensive understanding of the phenotypic effects of captive rearing, through comparisons with their wild conspecifics, is essential. In this study, we investigated the divergence in body coloration between wild and hatchery-reared marbled rockfish Sebastiscus marmoratus. We examined the selection preferences for different light colors and assessed the impact of different ambient light colors on the morphological color-changing ability of juvenile marbled rockfish. Our findings revealed significant differences in body color between wild and hatchery-reared marbled rockfish. The hue and saturation values of wild marbled rockfish were significantly higher than those of their hatchery-reared counterparts, indicative of deeper and more vibrant body coloration in the wild population. Following a ten-day rearing period under various light color environments, the color of wild marbled rockfish remained relatively unchanged. In contrast, hatchery-reared marbled rockfish tended to change their color, albeit not reaching wild-like coloration. Light color preference tests demonstrated that wild juvenile marbled rockfish exhibited a preference for a red-light environment, while hatchery-reared individuals showed a similar but weaker response. Both wild and hatchery-reared marbled rockfish displayed notable negative phototaxis in the presence of yellow and blue ambient light. These results highlight the impact of hatchery rearing conditions on the body color and morphological color-changing ability, and provide insight into light color selection preferences of marbled rockfish. To mitigate the divergence in phenotypic development and produce more wild-like fish for stocking purposes, modifications to the hatchery environment, such as the regulation of ambient light color, should be considered.