Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(45): 30993-31002, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37938030

RESUMO

Lead-free metal halide perovskites have received widespread attention due to their composition of minimal hazardous components, excellent air stability, and long carrier lifetimes. However, the majority of the lead-free metal halide perovskites, such as Cs3Bi2Br9, have wide bandgaps, which limits their photoelectric in solar cells and optoelectronic devices. To address this issue, attempts have been made to adjust the bandgap through material alloying. Based on a solution approach, a pure phase of Cs3Bi2-xSbxBr9 crystals has been synthesized, with the alloying parameter x changing over the full range of composition. It is found that the mixed alloy has a smaller bandgap than pure Bi-based and Sb-based perovskites, with the smallest bandgap of 2.22 eV near x = 1, and there is a phenomenon of bandgap bowing throughout the alloying process. The electronic structure of Cs3Bi2-xSbxBr9 has been investigated using DFT calculations and the bandgap bowing of Cs3Bi2-xSbxBr9 is deduced to be related to the type-II band alignment between the Cs3Bi2Br9 and Cs3Sb2Br9. Owing to the mismatch of s and p orbital energies of Bi and Sb, the mixed alloy has a smaller bandgap. Our work demonstrated a method for achieving bandgap reduction and explained the phenomenon of bandgap bowing by pairing materials into type-II band alignment, which may also be found in other lead-free metal perovskites.

2.
Mediators Inflamm ; 2022: 7345116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164390

RESUMO

Gedan Jiangya decoction (GJD) (aqueous ethanol extract), a traditional Chinese medicine formula which contain six botanical drugs (Uncaria rhynchophylla (Miq.) Miq., Salvia miltiorrhiza Bunge, Pueraria lobata (Willd.) Ohwi, Eucommia ulmoides Oliv., Prunella vulgaris L., and Achyranthes bidentata Blume) was designed to treat hypertension; however, the underlying mechanism of action is unclear. This study aimed to determine the mechanisms of action of GJD in the treatment of hypertension in spontaneously hypertensive rats (SHR). Male SHRs were randomly divided into five groups: GJD doses were low (1.36 g/kg/d), medium (2.72 g/kg/d), and high (5.44 g/kg/d), captopril (13.5 mg/kg/d), and SHR groups, with Wistar-Kyoto rats (WKY) serving as the control. Every rat was gavaged once a day. The ALC-NIBP, a noninvasive blood pressure device, measured systolic (SBP) and diastolic (DBP) blood pressures. Six weeks following treatment, all rats were anesthetized. The blood samples were obtained from the abdominal aorta and then serum isolated to assess endothelin-1 and angiotensin II, interleukin-1beta, interleukin-6, and TNF-alpha. The left ventricular and thoracic aortas were taken for HE staining, immunohistochemistry, RT-qPCR, and western blot examination. Following GJD therapy, SBP and DBP were significantly lowered, as were serum levels of endothelin-1 and angiotensin II. The thickness of the left ventricular and thoracic aorta walls reduced, as did type I collagen, type III collagen, and alpha-SMA expression in the left ventricular and aortic tissues. The GJD treatment significantly reduced serum levels of the inflammatory markers interleukin-1beta, interleukin-6, and TNF-alpha. Furthermore, interleukin-1 beta, interleukin-6, TNF-alpha, TAK1, and NF-κB/p65 levels were significantly reduced in left ventricular and aortic tissues, whereas IkB-alpha levels were significantly elevated. GJD has a dose-dependent effect on all parameters. In conclusion, GJD has been shown to lower blood pressure, improve cardiovascular remodeling, and reduce inflammation via regulating NF-κB in SHRs.


Assuntos
Angiotensina II , Hipertensão , Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Captopril/farmacologia , Captopril/uso terapêutico , Colágeno Tipo III , Endotelina-1/farmacologia , Etanol , Inflamação/tratamento farmacológico , Interleucina-1beta/farmacologia , Interleucina-6/farmacologia , Masculino , NF-kappa B , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fator de Necrose Tumoral alfa/farmacologia , Uncaria
3.
Neurochem Res ; 43(2): 316-323, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29098530

RESUMO

Clinical studies have demonstrated that decreased adiponectin is associated with the development of Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). We focused on determining the neuroprotective effect offered by adiponectin against streptozotocin-induced brain damage in ICV-STZ rat model. We found that adiponectin supplements significantly restored the cognitive deficits in ICV-STZ rat model including shorter escape latency, more crossing times and increased time spent in the target quadrant. Adiponectin supplements also increased number of dendritic branches and mushroom percentage. In addition, adiponectin supplements attenuated tau hyperphosphorylation at multiple AD-related sites through activation of protein Ser9-phosphorylated glycogen synthase kinase-3ß (Ser9-GSK-3ß) with increased the Akt and PI3K activity. Our data suggest that adiponectin supplements have neuroprotective effects on the ICV-STZ rat model, which may be mediated by the activation of the PI3K/Akt/GSK-3ß signaling pathway.


Assuntos
Adiponectina/farmacologia , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Estreptozocina/farmacologia , Proteínas tau/farmacologia , Animais , Transtornos Cognitivos/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Proteínas tau/metabolismo
4.
J Nanosci Nanotechnol ; 17(1): 538-43, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29629747

RESUMO

In this study we report on the electrodeposition of copper thiocynate (CuSCN) nanorod arrays on ITO substrate from an EDTA-chelated aqueous solution. Effects of molecule ratio of EDTA/Cu²âº and deposition time on the properties of CuSCN layers were studied. Results showed that films deposited from an electrolyte with low EDTA amounts were consisted of densely packed nano-crystals, while films deposited with high molecule ratios of EDTA/Cu²âº (>0.5) were composed of homogeneous nanorods with their (001) plane perpendicular to the substrate. Further time-dependent study showed that the formation of CuSCN nanorods was initiated at the very beginning of potential application and no intermediate or transitional products were detected during the electrochemical process. Optical analysis showed that films of CuSCN nanorods with a thickness of 100­400 nm had good optical quality, and exhibited the fundamental absorption edge at 320 nm.

5.
R Soc Open Sci ; 11(5): 231464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076810

RESUMO

The perovskite crystal structure represents a semiconductor material poised for widespread application, underpinned by attributes encompassing heightened efficiency, cost-effectiveness and remarkable flexibility. Notably, strontium titanate (SrTiO3)-type perovskite, a prototypical ferroelectric dielectric material, has emerged as a pre-eminent matrix material for enhancing the energy storage capacity of perovskite. Typically, the strategy involves augmenting its dielectric constant through doping to enhance energy storage density. However, SrTiO3 doping data are plagued by significant dispersion, and the small sample size poses a formidable research hurdle, hindering the investigation of dielectric property and energy storage density enhancements. This study endeavours to address this challenge, our foundation lies in the compilation of 200 experimental records related to SrTiO3-type perovskite doping, constituting a small dataset. Subsequently, an interactive framework harnesses deep neural network models and a one-dimensional convolutional neural network model to predict and scrutinize the dataset. Distinctively, the mole percentage of doping elements exclusively serves as input features, yielding significantly enhanced accuracy in dielectric performance prediction. Lastly, rigorous comparisons with traditional machine learning models, specifically gradient boosting regression, validate the superiority and reliability of deep learning models. This research advances a novel, effective methodology and offers a valuable reference for designing and optimizing perovskite energy storage materials.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39188207

RESUMO

For solving the trade-off relationship of the polarization and breakdown electric field, ferroelectric films with high polarization are playing a critical role in energy storage capacitor applications, especially at moderate/low electric fields. In this work, we propose a multiscale structure (including defect, domain, and grain structures) synergetic optimization strategy to optimize the polarization behavior and energy storage performances of BiMg0.5Ti0.5O3 (BMT) ferroelectric films by introducing Sr0.7La0.2TiO3 (SLT) without compromising the breakdown strength. At a moderate electric field of 2917 kV/cm, a high discharge density of 72.2 J/cm3 has been achieved in 0.9BMT-0.1SLT films, together with good frequency, thermal, and cycle stabilities for energy storage. Importantly, the phase difference Δφ is utilized to quantitatively evaluate the polarization switching mobility of the ferroelectric domain/PNRs at an external electric field stimulation. This research demonstrates that a multiscale structure optimization strategy could effectively regulate the energy storage performance, and ecofriendly BMT-based materials are promising candidates for next-generation energy storage capacitors, especially at moderate/low electric fields.

7.
Adv Mater ; 36(18): e2311721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224342

RESUMO

Dielectric capacitors, characterized by ultra-high power densities, are considered as fundamental energy storage components in electronic and electrical systems. However, synergistically improving energy densities and efficiencies remains a daunting challenge. Understanding the role of polarity heterogeneity at the nanoscale in determining polarization response is crucial to the domain engineering of high-performance dielectrics. Here, a bidirectional design with phase-field simulation and machine learning is performed to forward reveal the structure-property relationship and reversely optimize polarity heterogeneity to improve energy storage performance. Taking BiFeO3-based dielectrics as typical systems, this work establishes the mapping diagrams of energy density and efficiency dependence on the volume fraction, size and configuration of polar regions. Assisted by CatBoost and Wolf Pack algorithms, this work analyzes the contributions of geometric factors and intrinsic features and find that nanopillar-like polar regions show great potential in achieving both high polarization intensity and fast dipole switching. Finally, a maximal energy density of 188 J cm-3 with efficiency above 95% at 8 MV cm-1 is obtained in BiFeO3-Al2O3 systems. This work provides a general method to study the influence of local polar heterogeneity on polarization behaviors and proposes effective strategies to enhance energy storage performance by tuning polarity heterogeneity.

8.
Adv Mater ; 36(35): e2406625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970526

RESUMO

Analogous to linear dielectric, amorphous perovskite dielectrics characterized of high breakdown strength and low remanent polarization possess in-depth application in the sea, land, and air fields. Amorphous engineering is a common approach to balance the inverse relationship between polarization and breakdown strength in dielectric ceramic capacitor, however, the low polarization is the major barrier limiting the improvement of energy storage density. To address this concern, the polymorphic localized heterostructure confirmed by high-resolution transmission electron microscope (HR-TEM) and HADDF images is constructed in BaTiO3-Bi(Ni0.5Zr0.5)O3 amorphous/nanocrystalline composite film with SiO2 addition (BT-BNZ-xS, x = 3, 5, 7, 10 mol%). The stability of nanocrystalline region achieved by Si-rich transition region and the enhancive ultra-short-range ordering in the amorphous region synergistically result in large breakdown strength and nonhysteretic polarized response. This polymorphic localized heterostructure optimizes the thermal stability in a wide temperature range and contributes ultrahigh energy storage density of 149.9 J cm-3 with markedly enhanced efficiency of 79.0%. This study provides a universal strategy to design the polarization behavior in other amorphous perovskite-based dielectrics.

9.
ACS Appl Mater Interfaces ; 16(6): 7161-7170, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306453

RESUMO

2D Ruddlesden-Popper (RP) perovskites have appeared as a promising prospective material owing to their tunable optoelectronic peculiarities and structural stability. The choice of interlayer cations greatly influences the performance of the 2D RP perovskites. In this study, through theoretical calculations and experimental investigation, we demonstrate the intrinsic and device performance differences between two perovskites based on cations of thiophenemethylamine (TMA) and thiopheneethylamine (TEA). Using density functional theory (DFT) calculations, it exposes that as compared to (TMA)2PbI4, (TEA)2PbI4 exhibits more pronounced distortion of [PbI6]4- units and possesses a wider band gap and larger effective mass. The experimental results on the TMA- and TEA-based 2D perovskites further show that when TEA is used as the interlayer cation, the crystallization process tends to form more low-n phases, which hinder charge transfer and decrease light harvesting. On the other hand, when TMA is used as the interlayer cation, excessive low-n phases are not observed, and the thin film exhibits excellent quality with significantly improved electron mobility. The (TMA)2(FA)n-1PbnI3n+1 (n = 5) perovskite device shows a remarkable conversion efficiency of 16.56%, much higher than that of TEA-based devices (PCE = 2.58%). Moreover, the unencapsulated devices based on TMA were able to maintain 88% of their initial efficiency even after being exposed to the environment (RT, RH = 30 ± 5%) for a duration of 1080 h. These findings provide important insights into the differences between thiophene-based cations and the selection of organic interlayer cations for 2D RP perovskite solar cells.

10.
Nat Commun ; 15(1): 4940, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858370

RESUMO

Dielectric capacitors offer great potential for advanced electronics due to their high power densities, but their energy density still needs to be further improved. High-entropy strategy has emerged as an effective method for improving energy storage performance, however, discovering new high-entropy systems within a high-dimensional composition space is a daunting challenge for traditional trial-and-error experiments. Here, based on phase-field simulations and limited experimental data, we propose a generative learning approach to accelerate the discovery of high-entropy dielectrics in a practically infinite exploration space of over 1011 combinations. By encoding-decoding latent space regularities to facilitate data sampling and forward inference, we employ inverse design to screen out the most promising combinations via a ranking strategy. Through only 5 sets of targeted experiments, we successfully obtain a Bi(Mg0.5Ti0.5)O3-based high-entropy dielectric film with a significantly improved energy density of 156 J cm-3 at an electric field of 5104 kV cm-1, surpassing the pristine film by more than eight-fold. This work introduces an effective and innovative avenue for designing high-entropy dielectrics with drastically reduced experimental cycles, which could be also extended to expedite the design of other multicomponent material systems with desired properties.

11.
Zhonghua Yi Xue Za Zhi ; 93(17): 1330-4, 2013 May 07.
Artigo em Zh | MEDLINE | ID: mdl-24029484

RESUMO

OBJECTIVE: To assess the neuroprotective effect of Tempol, an antioxidant acting as a superoxide dismutase mimic, on white matter lesions and cognitive impairment in rats with chronic cerebral hypoperfusion. METHODS: Chronic cerebral ischemia was induced by permanent occlusion of bilateral common carotid arteries (2-VO) in male Wistar rats. The animals were divided into sham operation, saline-treated, Tempol (8 mg/kg) and Tempol (30 mg/kg) groups (n = 15 each). Performance of Morris water maze task and Western blot for myelin basic protein (MBP), amyloid precursor protein (APP) and 4-hydroxy-2-nonenal (HNE) modified proteins were analyzed at 6 weeks post-hypoperfusion. RESULTS: Tempol reduced the escape latency of Morris water maze post-hypoperfusion in comparison with the saline-treated rats (P < 0.05). The mean relative optical density of MBP in the white matter was significantly higher in Tempol (8 mg/kg) group (0.82 ± 0.17) and Tempol (30 mg/kg) group (0.91 ± 0.15) than saline-treated group (0.44 ± 0.13, all P < 0.01). The mean relative optical density of APP in white matter was significantly lower in Tempol (8 mg/kg) group (0.55 ± 0.13) and Tempol (30 mg/kg) group (0.46 ± 0.15) than saline-treated group (0.96 ± 0.19, all P < 0.01). The mean relative optical density of HNE-modified protein in white matter was significantly lower in Tempol (8 mg/kg) group (0.20 ± 0.035) and Tempol (30 mg/kg) group (0.18 ± 0.031) than saline-treated group (0.29 ± 0.039, all P < 0.01). CONCLUSION: Tempol ameliorates cognitive impairment by preventing white matter lesions induced by chronic cerebral hypoperfusion in rats. And it may protect white matter lesions in hypoperfused rats through reducing the formation of lipid peroxidation.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/psicologia , Óxidos N-Cíclicos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Animais , Transtornos Cognitivos/etiologia , Masculino , Ratos , Ratos Wistar , Marcadores de Spin
12.
J Colloid Interface Sci ; 629(Pt B): 739-749, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36193618

RESUMO

As an efficient photocatalyst, graphitic carbon nitride (g-C3N4) has been widely used in the field of photocatalytic hydrogen production. However, how to prepare hydrogen efficiently and stably has become a challenge. Herein, we successfully realize metal-free edge modification with phenyl groups by one-step thermal polymerization of urea with 4-phenyl-3-thiosemicarbazide. Consequently, the optimal photocatalytic hydrogen production rate for the modified graphitic carbon nitride is increased by three times to a value of 2390.6 µmol h-1 g-1, while the apparent quantum efficiency (AQE) reaches 8.3 % at a wavelength of 420 nm. We also provide a theoretical explanation for the experiments using density functional theory (DFT) calculations, which suggest that energy level changes and electron redistribution for the modified carbon nitride materials contribute to the observed changes in catalytic performance. This work provides an effective solution for improving the photocatalytic activity of carbon nitride materials and provides theoretical support for the edge modification of carbon nitride materials to promote their photocatalytic hydrogen production efficiency.

13.
eNeurologicalSci ; 32: 100471, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37435445

RESUMO

Introduction: Langerhans cell histiocytosis (LCH) is a rare disease that usually occurs in children <15 years of age. Adult-onset LCH is extremely rare. Previous published guidelines and studies mainly focused on pediatric patients. The rarity and also insufficient knowledge of LCH in adults, especially central neuvous system (CNS) involvement of LCH, often resulted in missed and delayed diagnosis. Case presentation: A 35-year-old woman presented with cognitive impairment, anxietydepression, decreased eyesight, skin rash, hypernatremia, gonadal hormone deficiency and hypothyroidism. She had experienced menstrual disturbance and infertility since 10 years ago. MRI examination showed a mass lesion in the hypothalamic-pituitary region. Sighs of radiologic neurodegeneration were not found on brain MRI scans, however. Biopsy of skin rash confirmed the the diagnosis of multisystem LCH. BRAF V600E mutation was detected in the peripheral blood mononuclear cells. She accepted combination chemotherapy of vindesine and prednisone and accquired partial remission. The patient died of severe pneumonia during the second course of chemotherapy. Conclusion: Given the complicated differential diagnoses of neuroendocrine disorders, it was essential to be aware of CNS involvement of LCH at first, especially in adults. BRAF V600E mutation may participated in disease progression.

14.
Sci Rep ; 13(1): 10944, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414816

RESUMO

Hypertension is the most prevalent chronic disease World-wide, and the leading preventable risk factor for cardiovascular disease (CVD). Few patients accomplish the objective of decreasing blood pressure and avoiding hypertensive target organ damage after treatments with antihypertensive agents which opens the door for other treatments, such as herbal-and antihypertensive combination therapy. Captopril (CAP), as a-pril which inhibits angiotensin converting enzyme has long been used in the management of hypertension and CVD. Gedan Jiangya Decoction (GJD) is known for antihypertensive effects in prior studies. The research is aimed to determine whether GJD in combination with captopril has antihypertensive, kidney protective, antioxidant, and vasoactive effects in spontaneously hypertensive rats (SHR). Regular measurements of systolic and diastolic blood pressure (SBP and DBP), and body weight were monitored weekly. H&E staining was utilized to examine histopathology. The combined effects were studied using ELISA, immunohistochemistry, and qRT-PCR. Significant reductions in SBP, DBP, aortic wall thickness, and improvement in renal tissue were observed following GJD + CAP treatment, with increased serum levels of NO, SOD, GSH-Px, and CAT and decreases in Ang II, ET-1, and MDA. Similarly, GJD + CAP treatment of SHR's significantly decreased ET-1 and AGTR1 mRNA and protein expression while increasing eNOS mRNA and protein expression in thoracic aorta and kidney tissue. In conclusion, the present investigation found that GJD + CAP treatment decreases SHR blood pressure, improves aorta remodeling and renal protection, and that this effect could be attributable, in part, due to antioxidant and vascular tone improvement.


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Captopril/farmacologia , Captopril/uso terapêutico , Ratos Endogâmicos SHR , Antioxidantes/farmacologia , Rim/patologia , Pressão Sanguínea
15.
Materials (Basel) ; 16(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837308

RESUMO

The preparation of low-cost multilayer piezoelectric devices requires using cheap internal electrodes between the dielectric layers. A general strategy is to reduce the sintering temperature Ts of the ceramic layer by sintering aids which can form a liquid phase. Here, 0.2 wt% Li2CO3 was added as a sintering aid to tailor the sinterability and piezoelectricity of the commercial PZT ceramics. As verified from experiments, the piezoelectric ceramics could be densified at a sintering temperature above 940 °C, suitable for co-firing with the cheap internal electrode. The optimized sintering temperature of 980 °C can be confirmed for the 0.2 wt% Li2CO3-modified PZT ceramics due to its high piezoelectric coefficient d33 ~ 701 pC/N, planar coupling factor kp ~ 66.7%, and a low mechanical quality factor Qm ~ 71 with a transition temperature of Tc ~ 226 °C, presenting the characteristics of typical soft piezoelectric ceramics. Moreover, both the potential piezoelectric strain ~0.13% under 20 kV/cm and the good cycling fatigue characteristic (>104 cycles) of the studied piezo compositions indicates strong competitiveness in the field of multilayer piezoelectric devices.

16.
Adv Sci (Weinh) ; 10(16): e2300320, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37026615

RESUMO

Understanding the electromechanical breakdown mechanisms of polycrystalline ceramics is critical to texture engineering for high-energy-density dielectric ceramics. Here, an electromechanical breakdown model is developed to fundamentally understand the electrostrictive effect on the breakdown behavior of textured ceramics. Taking the Na0.5 Bi0.5 TiO3 -Sr0.7 Bi0.2 TiO3 ceramic as an example, it is found that the breakdown process significantly depends on the local electric/strain energy distributions in polycrystalline ceramics, and reasonable texture design could greatly alleviate electromechanical breakdown. Then, high-throughput simulations are performed to establish the mapping relationship between the breakdown strength and different intrinsic/extrinsic variables. Finally, machine learning is conducted on the database from the high-throughput simulations to obtain the mathematical expression for semi-quantitatively predicting the breakdown strength, based on which some basic principles of texture design are proposed. The present work provides a computational understanding of the electromechanical breakdown behavior in textured ceramics and is expected to stimulate more theoretical and experimental efforts in designing textured ceramics with reliable electromechanical performances.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36437833

RESUMO

Gedan Jiangya Decoction (GJD), a Chinese herbal medicine composed of six botanical medicines, was designed to treat hypertension (patent published number (CN114246896A)). The overexpression of the ERK (extracellular signal-regulated kinase) signaling pathway is essential in developing left ventricular hypertrophy (LVH). This study aimed to evaluate GJD's effects on LVH in spontaneously hypertensive rats (SHRs) and examine its potential mechanisms on Ras/ERK1/2 pathway regulation. Thirty-five ten-week-old SHRs were randomly assigned to one of five groups: GJD low dosage, medium dose, high dose, model, and captopril. Wistar-Kyoto (WKY) rats served as the control group. All rats received a 6-week treatment. The following parameters were measured: systolic (SBP) and diastolic blood pressure (DBP), left ventricular mass index (LVMI), and serum TGF-beta1. The pathologic structure was determined by H & E staining and Masson. TGF-beta1, Ras, ERK1/2, and C-Fos levels were determined using western blotting and real-time qPCR. SBP, DBP, and LVMI were reduced significantly in the GJD group compared with the model group. GJD inhibited TGF-beta1, Ras, ERK1/2, and C-Fos expression in LVH. In conclusion, GJD reduced the Ras/ERK1/2 pathway expression, which decreased hypertension-induced heart hypertrophy. GJD may protect hypertension-induced myocardial hypertrophy by altering gene expression patterns in the heart.

18.
Biomed Res Int ; 2022: 3353464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046450

RESUMO

Primary hypertension is understood as a disease with diverse etiology, a complicated pathological mechanism, and progressive changes. Gedan Jiangya Decoction (GJD), with the patent publication number CN114246896A, was designed to treat primary hypertension. It contains six botanical drugs; however, the underlying mechanism is uncertain. We utilized network pharmacology to predict the active components, targets, and signaling pathways of GJD in the treatment of primary hypertension. We also investigated the potential molecular mechanism using molecular docking and animal experiments. The Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the Protein Database (UniProt), and a literature review were used to identify the active components and related targets of GJD's pharmacological effects. The GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and DrugBank databases were utilized to identify hypertension-related targets. Based on a Venn diagram of designed intersection targets, 214 intersection targets were obtained and 35 key targets for the treatment of hypertension were determined using the STRING data platform and Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of key targets revealed that the relevant molecular action pathways of GJD in the treatment of hypertension include the Toll-like receptor, MAPK, PI3K-Akt, and renin-angiotensin signaling pathways. A GJD active ingredient-key target-pathway connection diagram was created using Cytoscape software, and 11 essential active components were selected. Molecular docking was then used to verify the binding activity of key targets and key active ingredients in GJD to treat primary hypertension. The results of this study indicate that AGTR1, AKT1 with puerarin, EDNRA with tanshinone IIA, MAPK14 with daidzein, MAPK8 with ursolic acid, and CHRM2 with cryptotanshinone had high binding activity to the targets with active components, whereas AGTR1 was selected as target genes verified by our experiment. HPLC was utilized to identify the five active ingredients. Experiments in high-salt rats demonstrated that GJD might decrease the expression of AGTR1 in the kidney and thoracic aorta while increasing the expression of eNOS by preventing the activation of the renin-angiotensin pathway, thereby reducing lowering systolic and diastolic blood pressure.


Assuntos
Medicamentos de Ervas Chinesas , Hipertensão , Angiotensinas/uso terapêutico , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Hipertensão/tratamento farmacológico , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Ratos , Renina
19.
Front Pharmacol ; 13: 745074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450051

RESUMO

Shenerjiangzhi formulation (SEJZ) is a new traditional Chinese medicine formulation (patent number: CN110680850A). SEJZ contains Eleutherococcus senticosus (Rupr. and Maxim.), Maxim (Araliaceae; E. senticosus radix and rhizome), Lonicera japonica Thunb (Caprifoliaceae; Lonicera japonica branch, stem), Crataegus pinnatifida Bunge (Rosaceae; Crataegus pinnatifida fruit), and Auricularia auricula. SEJZ has been designed to treat hyperlipidemia. Despite the therapeutic benefits of SEJZ, its underlying mechanism of action is not known. We explored the efficacy of SEJZ against hyperlipidemia by integrating network pharmacology and 16S rRNA gene sequencing and elucidated its mechanism of action. First, SEJZ targets were found through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and from the literature. Hyperlipidemia-related therapeutic targets were obtained from GeneCards, Online Mendelian Inheritance in Man, and DrugBank databases. Then, Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape were applied for the analyses and construction of a protein-protein interaction (PPI) network. The Kyoto Encyclopedia of Genes and Genomes database was employed to identify signaling pathways that were enriched. Second, the therapeutic effects of SEJZ against hyperlipidemia induced by consumption of a high-fat diet in rats were evaluated by measuring body weight changes and biochemical tests. SEJZ treatment was found to alleviate obesity and hyperlipidemia in rats. Finally, 16S rRNA gene sequencing showed that SEJZ could significantly increase the abundance of short-chain fatty acid-producing bacteria, restore the intestinal barrier, and maintain intestinal-flora homeostasis. Using PICRUSt2, six metabolic pathways were found to be consistent with the results of network pharmacology: "African trypanosomiasis", "amoebiasis", "arginine and proline metabolism", "calcium signaling pathway", "NOD-like receptor signaling pathway", and "tryptophan metabolism". These pathways might represent how SEJZ works against hyperlipidemia. Moreover, the "African trypanosomiasis pathway" had the highest association with core genes. These results aid understanding of how SEJZ works against dyslipidemia and provide a reference for further studies.

20.
Small Methods ; 5(11): e2100787, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34927961

RESUMO

Dielectric film capacitors are considered as potential candidates for advanced power electronics technology due to their extremely high-power densities and outstanding mechanical and thermal stability, but the further improvement of energy storage density is still needed. Here, a strategy is proposed to enhance the energy storage properties by introducing nanoscale polarization regions into amorphous films, which can significantly improve the maximum polarization and maintain a high breakdown strength. The (1-x)BaTiO3 -xBi(Ni0.5 Zr0.5 )O3 ((1-x)BT-xBNZ) thin films are fabricated by the sol-gel method and the amorphous films with nanoscale polarization regions are obtained by adjusting the preparation process. Consistent with the conjecture, amorphous phase and nanoscale polarization regions in the (1-x)BT-xBNZ films are clearly observed by electron diffraction. Results show that giant recoverable energy density of 103.7 J cm-3 with high energy efficiency of 88.3% are simultaneously achieved at 8.3 MV cm-1 in 0.92BT-0.08BNZ thin films. Furthermore, the 0.92BT-0.08BNZ thin film exhibits excellent thermal stability in a wide temperature range of 20-200 °C, ∆Wrec /Wrec20 °C  < 2.2%. This work provides a novel method for dielectric thin film capacitors applied in high temperature and electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA