Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Small ; : e2404566, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963158

RESUMO

Optoelectronic synapses have gained increasing attentions as a fundamental building block in the development of neuromorphic visual systems. However, it remains a challenge to integrate multiple functions into a single optoelectronic synapse that can be widely applied in wearable artificial intelligence and implantable neuromorphic vision systems. In this study, a stretchable optoelectronic synapse based on biodegradable ionic gelatin heterojunction is successfully developed. This device exhibits self-powered synaptic plasticity behavior with broad spectral response and excellent elastic properties, yet it degrades rapidly upon disposal. After complete cleavage, the device can be fully repaired within 1 min, which is mainly attributed to the non-covalent interactions between different molecular chains. Moreover, the recovery and reprocessing of the ionic gelatins result in optoelectronic properties that are virtually indistinguishable from their original state, showcasing the resilience and durability of ionic gelatins. The combination of biodegradability, stretchability, self-healing, zero-power consumption, ease of large-scale preparation, and low cost makes the work a major step forward in the development of biodegradable and stretchable optoelectronic synapses.

2.
Small ; : e2306557, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063820

RESUMO

Ionogels are extremely soft ionic materials that can undergo large deformation while maintaining their structural and functional integrity. Ductile ionogels can absorb energy and resist fracture under external load, making them an ideal candidate for wearable electronics, soft robotics, and protective gear. However, developing high-modulus ionogels with extreme toughness remains challenging. Here, a facile one-step photopolymerization approach to construct an acrylic acid (AA)-2-hydroxyethylacrylate (HEA)-choline chloride (ChCl) eutectogel (AHCE) with ultrahigh modulus and toughness is reported. With rich hydrogen bonding crosslinks and phase segregation, this gel has a 99.1 MPa Young's modulus and a 70.6 MJ m-3 toughness along with 511.4% elongation, which can lift 12 000 times its weight. These features provide extreme damage resistance and electrical healing ability, offering it a protective and strain-sensitive coating to innovate anticutting fabric with motion detection for human healthcare. The work provides an effective strategy to construct robust ionogel materials and smart wearable electronics for intelligent life.

3.
Small ; 17(34): e2102060, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34288427

RESUMO

Inspired by the 2D bilayer lipid membranes in nature, a unique supramolecular "push-pull" synergetic strategy toward self-assembled 2D organic crystals (2DOCs) is proposed in this work, which can effectively suppress the interlayer 3D stacking while maintaining the assembly of the intralayer for 2D growth. For this purpose, a model molecule PF-Py consisting of a planar supramolecular "attractor" and a nonplanar steric "repellor" is designed for the solution self-assembly process. Well-defined 2DOCs including crystal nanosheets and millimeter-sized crystal films with layered amphiphile-like packing are obtained, which is analogical to the cell membranes of living organisms. Thanks to the special packing mode, the 2DOCs have fascinating integrated photoelectric property, with high mobility of 7.8 × 10-2 cm2 V-1 s-1 , high crystalline state photoluminescence quantum yield of 55%, and superior deep-blue laser characteristics with a low threshold of 5.51 µJ cm-2 . This supramolecular synergetic strategy advances the design of 2D organic semiconductor crystals for high performance optoelectronics.


Assuntos
Semicondutores
4.
Phys Chem Chem Phys ; 23(46): 26385-26391, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792049

RESUMO

Effective charge separation is essential in plasmon-mediated photochemistry and is usually achieved by constructing plasmon-semiconductor interfaces, which is usually challenging. In this work, by monitoring the plasmon-mediated silver oxidation with in situ Raman spectroscopy, we demonstrate that the adsorbed thiophenol molecules could modulate the rate of photochemical reactions by tuning the charge separation at the plasmon-molecule interfaces. It is found that the thiophenol molecules with strong electron-withdrawing or donating functional groups could accelerate or decelerate the rate of plasmon-mediated silver oxidation, respectively. Owing to the easy tuning of the electronic structures of organic molecules via substitution, our method provides a versatile and convenient approach for the fine modulation of plasmon-mediated photochemical reactions.

5.
Macromol Rapid Commun ; 40(23): e1900394, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31702099

RESUMO

Diketopyrrolopyrrole (DPP)-based copolymers have received considerable attention as promising semiconducting materials for high-performance organic thin-film transistors (OTFTs). However, these polymers typically exhibit p-type or ambipolar charge-transporting characteristics in OTFTs due to their high-lying highest occupied molecular orbital (HOMO) energy levels. In this work, a new series of DPP-based n-type polymers have been developed by incorporating fused bithiophene imide oligomers (BTIn) into DPP polymers. The resulting copolymers BTIn-DPP show narrow band gaps as low as 1.27 eV and gradually down-shifted frontier molecular orbital energy levels upon the increment of imide group number. Benefiting from the coplanar backbone conformation, well-delocalized π-system, and favorable polymer chain packing, the optimal polymer in the series shows promising n-type charge transport with an electron mobility up to 0.48 cm2 V-1 s-1 in OTFTs, which is among the highest values for the DPP-based n-type polymers reported to date. The results demonstrate that incorporating fused bithiophene imide oligomers into polymers can serve as a promising strategy for constructing high-performance n-type polymeric semiconductors.


Assuntos
Imidas/química , Cetonas/química , Polímeros/síntese química , Pirróis/química , Tiofenos/química , Teoria da Densidade Funcional , Estrutura Molecular , Polímeros/química , Semicondutores , Transistores Eletrônicos
6.
J Am Chem Soc ; 137(4): 1444-7, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25597345

RESUMO

Assembly of noble metal nanocrystals into free-standing two-dimensional (2D) nanostructures with a regular shape is still a challenge. Here we report the preparation of a novel 2D AuAg nanosheet with length of 1.50 ± 0.30 µm, width of 510 ± 160 nm, and thickness of ∼100 nm via the assembly of ultrathin AuAg nanowires in the presence of the triblock copolymer Pluronic P123. The self-assembly of P123 and the fusion behavior of the nanowires during the assembly process are the key reasons for the formation of AuAg nanosheets in P123. Furthermore, the obtained AuAg nanosheet@P123 is used as the active material in a memory device that exhibits the write-once-read-many-times memory behavior.

7.
Angew Chem Int Ed Engl ; 53(20): 5083-7, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24711069

RESUMO

Semiconducting nanosheets with microscale lateral size are attractive building blocks for the fabrication of electronic and optoelectronic devices. The phase-controlled chemical synthesis of semiconducting nanosheets is of particular interest, because their intriguing properties are not only related to their size and shape, but also phase-dependent. Herein, a facile method for the synthesis of phase-pure, microsized, two-dimensional (2D) CuSe nanosheets with an average thickness of approximately 5 nm is demonstrated. These hexagonal-phased CuSe nanosheets were transformed into cubic-phased Cu(2-x)Se nanosheets with the same morphology simply by treatment with heat in the presence of Cu(I) cations. The phase transformation, proposed to be a template-assisted process, can be extended to other systems, such as CuS and Cu1.97 S nanoplates. Our study offers a new method for the phase-controlled preparation of 2D nanomaterials, which are not readily accessible by conventional wet-chemical methods.

8.
Angew Chem Int Ed Engl ; 53(46): 12576-80, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25130600

RESUMO

Two-dimensional materials have attracted increasing research interest owing to their unique electronic, physical, optical, and mechanical properties. We thus developed a general strategy for the fabrication of ultralong hybrid microfibers from a mixture of reduced graphene oxide and transition-metal dichalcogenides (TMDs), including MoS2 , TiS2 , TaS2 , and NbSe2 . Furthermore, we prepared fiber-based solid-state supercapacitors as a proof-of-concept application. The performance of thus-prepared supercapacitors was greatly improved by the introduction of the TMDs.


Assuntos
Grafite/química , Nanoestruturas/química , Óxidos/química , Elementos de Transição/química , Capacitância Elétrica , Nanotecnologia/métodos , Oxirredução
9.
ACS Appl Mater Interfaces ; 16(10): 13052-13059, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38414333

RESUMO

Smart textiles with multifunction and highly stable performance are essential for their application in wearable electronics. Despite the advancement of various smart textiles through the decoration of conductive materials on textile surfaces, improving their stability and functionality remains a challenging topic. In this study, we developed an ionic textile (i-textile) with air permeability, water resistance, UV resistance, and sensing capabilities through in situ photopolymerization of ionogel onto the textile surface. The i-textile presents air permeability comparable to that of bare textile while possessing enhanced UV resistance. Remarkably, the i-textile maintains excellent electrical properties after washing 20 times or being subjected to 300 stretching cycles at 30% tension. When applied to human joint motion detection, the i-textile-based sensors can effectively distinguish joint motion based on their sensitivity and response speed. This research presents a novel method for developing smart textiles that further advances wearable electronics.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Movimento (Física) , Eletrônica , Eletrodos , Têxteis
10.
Adv Sci (Weinh) ; 11(19): e2400966, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483027

RESUMO

Ionic memristors can emulate brain-like functions of biological synapses for neuromorphic technologies. Apart from the widely studied excitatory-excitatory and excitatory-inhibitory synapses, reports on memristors with the inhibitory-inhibitory synaptic behaviors remain a challenge. Here, the first biaxially inhibited artificial synapse is demonstrated, consisting of a solid electrolyte and conjugated microporous polymers bilayer as neurotransmitter, with the former serving as an ion reservoir and the latter acting as a confined transport. Due to the migration, trapping, and de-trapping of ions within the nanoslits, the device poses inhibitory synaptic plasticity under both positive and negative stimuli. Remarkably, the artificial synapse is able to maintain a low level of stable nonvolatile memory over a long period of time (≈60 min) after multiple stimuli, with feature-inferencing/-training capabilities of neural node in neuromorphic computing. This work paves a reliable strategy for constructing nanochannel ionic memristive materials toward fully inhibitory synaptic devices.


Assuntos
Eletrólitos , Neurotransmissores , Sinapses , Sinapses/fisiologia , Eletrólitos/química , Porosidade , Plasticidade Neuronal/fisiologia
11.
Nat Commun ; 15(1): 3086, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600063

RESUMO

Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.


Assuntos
Próteses Visuais , Biônica , Retina , Visão Ocular , Percepção Visual
12.
Small ; 9(5): 727-31, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23161780

RESUMO

A mixed film consisting of 2D MoS2 and graphene oxide (GO) nanosheets is used to fabricate memory devices. The conductive MoS2 component in the MoS2-GO film increases the film conductivity, thus facilitating oxygen migration in GO. The MoS2-GO film-based device exhibits rewritable, nonvolatile, electrical bistable switching with low switching voltage (≤ 1.5 V) and high ON/OFF current ratio (≈ 10²).

13.
Small ; 9(19): 3314-9, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23983108

RESUMO

A simple thermal annealing method for layer thinning and etching of mechanically exfoliated MoS2 nanosheets in air is reported. Using this method, single-layer (1L) MoS2 nanosheets are achieved after the thinning of MoS2 nanosheets from double-layer (2L) to quadri-layer (4L) at 330 °C. The as-prepared 1L MoS2 nanosheet shows comparable optical and electrical properties with the mechanically exfoliated, pristine one. In addition, for the first time, the MoS2 mesh with high-density of triangular pits is also fabricated at 330 °C, which might arise from the anisotropic etching of the active MoS2 edge sites. As a result of thermal annealing in air, the thinning of MoS2 nanosheet is possible due to its oxidation to form MoO3 . Importantly, the MoO3 fragments on the top of thinned MoS2 layer induces the hole injection, resulting in the p-type channel in fabricated field-effect transistors.

14.
Adv Sci (Weinh) ; 10(30): e2303944, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37635198

RESUMO

Neuromorphic vision based on photonic synapses has the ability to mimic sensitivity, adaptivity, and sophistication of bio-visual systems. Significant advances in artificial photosynapses are achieved recently. However, conventional photosyanptic devices normally employ opaque metal conductors and vertical device configuration, performing a limited hemispherical field of view. Here, a transparent planar photonic synapse (TPPS) is presented that offers dual-side photosensitive capability for nearly panoramic neuromorphic vision. The TPPS consisting of all two dimensional (2D) carbon-based derivatives exhibits ultra-broadband photodetecting (365-970 nm) and ≈360° omnidirectional viewing angle. With its intrinsic persistent photoconductivity effect, the detector possesses bio-synaptic behaviors such as short/long-term memory, experience learning, light adaptation, and a 171% pair-pulse-facilitation index, enabling the synapse array to achieve image recognition enhancement (92%) and moving object detection.

15.
Nat Commun ; 13(1): 4996, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008407

RESUMO

Neuromorphic electronics, which use artificial photosensitive synapses, can emulate biological nervous systems with in-memory sensing and computing abilities. Benefiting from multiple intra/interactions and strong light-matter coupling, two-dimensional heterostructures are promising synaptic materials for photonic synapses. Two primary strategies, including chemical vapor deposition and physical stacking, have been developed for layered heterostructures, but large-scale growth control over wet-chemical synthesis with comprehensive efficiency remains elusive. Here we demonstrate an interfacial coassembly heterobilayer films from perylene and graphene oxide (GO) precursors, which are spontaneously formed at the interface, with uniform bilayer structure of single-crystal perylene and well-stacked GO over centimeters in size. The planar heterostructure device exhibits an ultrahigh specific detectivity of 3.1 × 1013 Jones and ultralow energy consumption of 10-9 W as well as broadband photoperception from 365 to 1550 nm. Moreover, the device shows outstanding photonic synaptic behaviors with a paired-pulse facilitation (PPF) index of 214% in neuroplasticity, the heterosynapse array has the capability of information reinforcement learning and recognition.


Assuntos
Grafite , Perileno , Plasticidade Neuronal , Sinapses/fisiologia
16.
Nanoscale Adv ; 3(15): 4536-4540, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36133459

RESUMO

Room temperature phosphorescent (RTP) materials are rising and gaining considerable attention due to their special photo-capture-release ability. Herein, a kind of environmentally friendly RTP composite was devised by microwaving a mixture of carbon dots, boric acid, and urea, in the presence of covalent bonds and hydrogen bonds between each of the components. The resultant RTP material showed ultra-long phosphorescence lifetime up to 1005.6 ms with an outstanding afterglow as long as 9.0 s. Moreover, this afterglow feature with moisture sensitive behavior was explored to achieve multilevel anti-counterfeiting, with the function of complex decryption of encrypted secret information under multiple stimuli. Our results provide a green strategy for scalable synthesis of carbon-based RTP materials, and extend their application scope to high level information security.

17.
Nanoscale Adv ; 3(9): 2475-2480, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134169

RESUMO

Electronic textiles (e-textiles) typically comprise fabric substrates with electronic components capable of heating, sensing, lighting and data storage. In this work, we rationally designed and fabricated anisotropic light/thermal emitting e-textiles with great mechanical stability based on a sandwich-structured tri-electrode device. By coating silver nanowire network/thermal insulation bilayer on fabrics, an anisotropic thermal emitter can be realized for smart heat management. By further covering the emissive film and the top electrode on the bilayer, light emitters with desirable patterns and colors are extracted from the top surface via an alternative current derived electroluminescence. Both the light and thermal emitting functions can be operated simultaneously or separately. Particularly, our textiles exhibit reliable heating and lighting performance in water, revealing excellent waterproof feature and washing stability.

18.
ACS Appl Mater Interfaces ; 13(25): 30205-30212, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34137259

RESUMO

Bioskins possess a great ability to detect and deliver external mechanical or temperature stimuli into identifiable signals such as color changes. However, the integration of visualization with simultaneous detection of multiple complex external stimuli in a single biosensor device remains a challenge. Here we propose an all-solution-processed bioinspired stretchable electronic skin with interactive color changes and four-mode sensing properties. The fabricated biosensor demonstrates sensitive responses to various stimuli including pressure, strain, voltage, and temperature. Sensing visualization is realized by color changes of the e-skin from brown to green and finally bright yellow as a response to intensified external stimuli, suggesting great application potential in military defense, healthcare monitoring, and smart bionic skin.


Assuntos
Colorimetria/instrumentação , Dispositivos Eletrônicos Vestíveis , Colorimetria/métodos , Desenho de Equipamento , Humanos , Pressão , Temperatura
19.
Nanoscale ; 13(2): 724-729, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33393574

RESUMO

Biocompatible materials have received increasing attention as one of the most important building blocks for flexible and transient memories. Herein, a fully biocompatible resistive switching (RS) memory electronic composed of a carbon dot (CD)-polyvinyl pyrrolidone (PVP) nanocomposite and a silver nanowire (Ag NW) network buried in a flexible gelatin film is introduced with promising nonvolatile RS characteristics for flexible and transient memory applications. The fabricated device exhibited a rewritable flash-type memory behavior, such as low operation voltage (≈-1.12 V), high ON/OFF ratio (>102), long retention time (over 104 s), and small bending radius (15 mm). As a proof of degradability, this transient memory can dissolve completely within 90 s after being immersed into deionized water at 55 °C; it can decompose naturally in soil within 6 days. This fully biocompatible memory electronic paves a novel way for flexible and wearable green electronics.

20.
Small ; 6(14): 1536-42, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20564728

RESUMO

Highly reduced graphene oxide (rGO) films are fabricated by combining reduction with smeared hydrazine at low temperature (e.g., 100 degrees C) and the multilayer stacking technique. The prepared rGO film, which has a lower sheet resistance ( approximately 160-500 Omega sq(-1)) and higher conductivity (26 S cm(-1)) as compared to other rGO films obtained by commonly used chemical reduction methods, is fully characterized. The effective reduction can be attributed to the large "effective reduction depth" in the GO films (1.46 microm) and the high C1s/O1s ratio (8.04). By using the above approach, rGO films with a tunable thickness and sheet resistance are achieved. The obtained rGO films are used as electrodes in polymer memory devices, in a configuration of rGO/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM)/Al, which exhibit an excellent write-once-read-many-times effect and a high ON/OFF current ratio of 10(6).


Assuntos
Carbono/química , Temperatura Baixa , Polímeros/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA