Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546045

RESUMO

The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.


Assuntos
Actinas , Ciliopatias , Proteínas Ativadoras de GTPase , Camundongos , Humanos , Animais , Actinas/metabolismo , Cílios/metabolismo , Polimerização
2.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345329

RESUMO

The cranial sutures are proposed to be a stem cell niche, harbouring skeletal stem cells that are directly involved in development, homeostasis and healing. Like the craniofacial bones, the sutures are formed from both mesoderm and neural crest. During cranial bone repair, neural crest cells have been proposed to be key players; however, neural crest contributions to adult sutures are not well defined, and the relative importance of suture proximity is unclear. Here, we use genetic approaches to re-examine the neural crest-mesoderm boundaries in the adult mouse skull. These are combined with calvarial wounding experiments suggesting that suture proximity improves the efficiency of cranial repair. Furthermore, we demonstrate that Gli1+ and Axin2+ skeletal stem cells are present in all calvarial sutures examined. We propose that the position of the defect determines the availability of neural crest-derived progenitors, which appear to be a key element in the repair of calvarial defects.


Assuntos
Suturas Cranianas , Crânio , Camundongos , Animais , Células-Tronco , Crista Neural , Mesoderma
3.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102702

RESUMO

Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), occurs in 1 in 800 live births and is the most common human aneuploidy. DS results in multiple phenotypes, including craniofacial dysmorphology, which is characterised by midfacial hypoplasia, brachycephaly and micrognathia. The genetic and developmental causes of this are poorly understood. Using morphometric analysis of the Dp1Tyb mouse model of DS and an associated mouse genetic mapping panel, we demonstrate that four Hsa21-orthologous regions of mouse chromosome 16 contain dosage-sensitive genes that cause the DS craniofacial phenotype, and identify one of these causative genes as Dyrk1a. We show that the earliest and most severe defects in Dp1Tyb skulls are in bones of neural crest (NC) origin, and that mineralisation of the Dp1Tyb skull base synchondroses is aberrant. Furthermore, we show that increased dosage of Dyrk1a results in decreased NC cell proliferation and a decrease in size and cellularity of the NC-derived frontal bone primordia. Thus, DS craniofacial dysmorphology is caused by an increased dosage of Dyrk1a and at least three other genes.


Assuntos
Síndrome de Down , Camundongos , Humanos , Animais , Síndrome de Down/genética , Crânio , Mapeamento Cromossômico , Fenótipo , Modelos Animais de Doenças
4.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905010

RESUMO

Although rare, childhood (paediatric) cancers are a major cause of death in young children. Unlike many adult cancers, paediatric cancers, such as neuroblastoma (NB), are developmental diseases that rarely show genetic predispositions. NB is the most common extracranial solid tumour in children, accounting for ∼15% of paediatric cancer deaths. This heterogeneous cancer arises from undifferentiated neural crest-derived progenitor cells. As neural crest cells are multipotent and migratory, they are often considered the embryonic paradigm of cancer stem cells. However, very little is known about the events that trigger tumour initiation and progression. Here, we discuss recent insights into sympathoadrenal lineage specification, as well as genetic factors associated with NB. With this in mind, we consider the molecular underpinnings of NB in the context of developmental trajectories of the neural crest lineage. This allows us to compare distinct subtypes of the disease and gene-function interactions during sensitive phases of neural crest development.


Assuntos
Crista Neural , Neuroblastoma , Biomarcadores , Diferenciação Celular , Criança , Pré-Escolar , Humanos , Células-Tronco Neoplásicas/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neurogênese
5.
Biochem Biophys Res Commun ; 724: 150174, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38852507

RESUMO

The primary cilium is a hair-like projection that controls cell development and tissue homeostasis. Although accumulated studies identify the molecular link between cilia and cilia-related diseases, the underlying etiology of ciliopathies has not been fully understood. In this paper, we determine the function of Rab34, a small GTPase, as a key regulator for controlling ciliogenesis and type I collagen trafficking in craniofacial development. Mechanistically, Rab34 is required to form cilia that control osteogenic proliferation, survival, and differentiation via cilia-mediated Hedgehog signaling. In addition, Rab34 is indispensable for regulating type I collagen trafficking from the ER to the Golgi. These results demonstrate that Rab34 has both ciliary and non-ciliary functions to regulate osteogenesis. Our study highlights the critical function of Rab34, which may contribute to understanding the novel etiology of ciliopathies that are associated with the dysfunction of RAB34 in humans.


Assuntos
Cílios , Osteogênese , Proteínas rab de Ligação ao GTP , Cílios/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Animais , Camundongos , Humanos , Crânio/metabolismo , Proteínas Hedgehog/metabolismo , Diferenciação Celular , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Transdução de Sinais , Desenvolvimento Ósseo , Ossos Faciais/metabolismo , Ossos Faciais/crescimento & desenvolvimento , Ossos Faciais/embriologia , Proliferação de Células , Transporte Proteico , Complexo de Golgi/metabolismo
6.
J Anat ; 244(2): 358-367, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37794731

RESUMO

The primary cilium is an essential organelle that is important for normal cell signalling during development and homeostasis but its role in pituitary development has not been reported. The primary cilium facilitates signal transduction for multiple pathways, the best-characterised being the SHH pathway, which is known to be necessary for correct pituitary gland development. FUZ is a planar cell polarity (PCP) effector that is essential for normal ciliogenesis, where the primary cilia of Fuz-/- mutants are shorter or non-functional. FUZ is part of a group of proteins required for recruiting retrograde intraflagellar transport proteins to the base of the organelle. Previous work has reported ciliopathy phenotypes in Fuz-/- homozygous null mouse mutants, including neural tube defects, craniofacial abnormalities, and polydactyly, alongside PCP defects including kinked/curly tails and heart defects. Interestingly, the pituitary gland was reported to be missing in Fuz-/- mutants at 14.5 dpc but the mechanisms underlying this phenotype were not investigated. Here, we have analysed the pituitary development of Fuz-/- mutants. Histological analyses reveal that Rathke's pouch (RP) is initially induced normally but is not specified and fails to express LHX3, resulting in hypoplasia and apoptosis. Characterisation of SHH signalling reveals reduced pathway activation in Fuz-/- mutant relative to control embryos, leading to deficient specification of anterior pituitary fate. Analyses of the key developmental signals FGF8 and BMP4, which are influenced by SHH, reveal abnormal patterning in the ventral diencephalon, contributing further to abnormal RP development. Taken together, our analyses suggest that primary cilia are required for normal pituitary specification through SHH signalling.


Assuntos
Polaridade Celular , Cílios , Animais , Camundongos , Cílios/fisiologia , Proteínas Hedgehog/metabolismo , Camundongos Knockout , Hipófise/metabolismo , Proteínas/metabolismo
7.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523147

RESUMO

Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.


Assuntos
Antígeno AC133/metabolismo , Cílios/metabolismo , Incisivo/citologia , Antígeno AC133/genética , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Incisivo/metabolismo , Camundongos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Transporte Proteico , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
8.
J Anat ; 243(1): 90-99, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36899483

RESUMO

The Hedgehog pathway gene Gli1 has been proposed to mark a subpopulation of skeletal stem cells (SSCs) in craniofacial bone. Skeletal stem cells (SSCs) are multi-potent cells crucial for the development and homeostasis of bone. Recent studies on long bones have suggested that skeletal stem cells in endochondral or intramembranous ossification sites have different differentiation capacities. However, this has not been well-defined in neural crest derived bones. Generally, the long bones are derived from mesoderm and follow an endochondral ossification model, while most of the cranial bones are neural crest (NC) in origin and follow an intramembranous ossification model. The mandible is unique: It is derived from the neural crest lineage but makes use of both modes of ossification. Early in fetal development, the mandibular body is generated by intramembranous ossification with subsequent endochondral ossification forming the condyle. The identities and properties for SSCs in these two sites remain unknown. Here, we use genetic lineage tracing in mouse to identify cells expressing the Hedgehog responsive gene Gli1, which is thought to mark the tissue resident SSCs. We track the Gli1+ cells, comparing cells within the perichondrium to those in the periosteum covering the mandibular body. In juvenile mice, these have distinct differentiation and proliferative potential. We also assess the presence of Sox10+ cells, thought to mark neural crest stem cells, but find no substantial population associated with the mandibular skeleton, suggesting that Sox10+ cells have limited contribution to maintaining postnatal mandibular bone. All together, our study indicates that the Gli1+ cells display distinct and limited differentiation capacity dependent on their regional associations.


Assuntos
Proteínas Hedgehog , Osteogênese , Camundongos , Animais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteínas Hedgehog/metabolismo , Mandíbula/metabolismo , Crânio , Crista Neural
9.
Hum Mol Genet ; 29(11): 1900-1921, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32196547

RESUMO

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.


Assuntos
Cateninas/genética , Fenda Labial/genética , Fissura Palatina/genética , Anormalidades Craniofaciais/genética , Ectrópio/genética , Cardiopatias Congênitas/genética , Anormalidades Dentárias/genética , Adolescente , Adulto , Animais , Anodontia/diagnóstico por imagem , Anodontia/genética , Anodontia/fisiopatologia , Criança , Pré-Escolar , Fenda Labial/diagnóstico por imagem , Fenda Labial/fisiopatologia , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/fisiopatologia , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/fisiopatologia , Modelos Animais de Doenças , Ectrópio/diagnóstico por imagem , Ectrópio/fisiopatologia , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Camundongos , Anormalidades Dentárias/diagnóstico por imagem , Anormalidades Dentárias/fisiopatologia , Xenopus , Adulto Jovem , delta Catenina
10.
Development ; 146(21)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719045

RESUMO

The tongue is a highly specialised muscular organ with a complex anatomy required for normal function. We have utilised multiple genetic approaches to investigate local temporospatial requirements for sonic hedgehog (SHH) signalling during tongue development. Mice lacking a Shh cis-enhancer, MFCS4 (ShhMFCS4/-), with reduced SHH in dorsal tongue epithelium have perturbed lingual septum tendon formation and disrupted intrinsic muscle patterning, with these defects reproduced following global Shh deletion from E10.5 in pCag-CreERTM; Shhflox/flox embryos. SHH responsiveness was diminished in local cranial neural crest cell (CNCC) populations in both mutants, with SHH targeting these cells through the primary cilium. CNCC-specific deletion of orofaciodigital syndrome 1 (Ofd1), which encodes a ciliary protein, in Wnt1-Cre; Ofdfl/Y mice led to a complete loss of normal myotube arrangement and hypoglossia. In contrast, mesoderm-specific deletion of Ofd1 in Mesp1-Cre; Ofdfl/Y embryos resulted in normal intrinsic muscle arrangement. Collectively, these findings suggest key temporospatial requirements for local SHH signalling in tongue development (specifically, lingual tendon differentiation and intrinsic muscle patterning through signalling to CNCCs) and provide further mechanistic insight into the tongue anomalies seen in patients with disrupted hedgehog signalling.


Assuntos
Padronização Corporal , Proteínas Hedgehog/metabolismo , Crista Neural/citologia , Transdução de Sinais , Língua/embriologia , Alelos , Animais , Proliferação de Células , Elementos Facilitadores Genéticos , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Heterozigoto , Ligantes , Mesoderma/metabolismo , Camundongos , Morfogênese/genética , Fenótipo , Proteínas/metabolismo , Tendões/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Proteína Wnt1/metabolismo
11.
Nat Mater ; 20(1): 108-118, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32958876

RESUMO

The maintenance of human skeletal stem cells (hSSCs) and their progeny in bone defects is a major challenge. Here, we report on a transplantable bandage containing a three-dimensional Wnt-induced osteogenic tissue model (WIOTM). This bandage facilitates the long-term viability of hSSCs (8 weeks) and their progeny, and enables bone repair in an in vivo mouse model of critical-sized calvarial defects. The newly forming bone is structurally comparable to mature cortical bone and consists of human and murine cells. Furthermore, we show that the mechanism of WIOTM formation is governed by Wnt-mediated asymmetric cell division of hSSCs. Covalently immobilizing Wnts onto synthetic materials can polarize single dividing hSSCs, orient the spindle and simultaneously generate a Wnt-proximal hSSC and a differentiation-prone Wnt-distal cell. Our results provide insight into the regulation of human osteogenesis and represent a promising approach to deliver human osteogenic constructs that can survive in vivo and contribute to bone repair.


Assuntos
Osso e Ossos/citologia , Divisão Celular , Osteogênese , Crânio/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Proteínas Wnt/metabolismo , Animais , Humanos , Camundongos , Crânio/fisiologia
12.
Biophys J ; 120(13): 2665-2678, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34087215

RESUMO

Muscle stem cells (MuSCs) are requisite for skeletal muscle regeneration and homeostasis. Proper functioning of MuSCs, including activation, proliferation, and fate decision, is determined by an orchestrated series of events and communication between MuSCs and their niche. A multitude of biochemical stimuli are known to regulate MuSC fate and function. However, in addition to biochemical factors, it is conceivable that MuSCs are subjected to mechanical forces during muscle stretch-shortening cycles because of myofascial connections between MuSCs and myofibers. MuSCs respond to mechanical forces in vitro, but it remains to be proven whether physical forces are also exerted on MuSCs in their native niche and whether they contribute to the functioning and fate of MuSCs. MuSC deformation in their native niche resulting from mechanical loading of ex vivo myofiber bundles was visualized utilizing mT/mG double-fluorescent Cre-reporter mouse and multiphoton microscopy. MuSCs were subjected to 1 h pulsating fluid shear stress (PFSS) with a peak shear stress rate of 6.5 Pa/s. After PFSS treatment, nitric oxide, messenger RNA (mRNA) expression levels of genes involved in regulation of MuSC proliferation and differentiation, ERK 1/2, p38, and AKT activation were determined. Ex vivo stretching of extensor digitorum longus and soleus myofiber bundles caused compression as well as tensile and shear deformation of MuSCs in their niche. MuSCs responded to PFSS in vitro with increased nitric oxide production and an upward trend in iNOS mRNA levels. PFSS enhanced gene expression of c-Fos, Cdk4, and IL-6, whereas expression of Wnt1, MyoD, Myog, Wnt5a, COX2, Rspo1, Vangl2, Wnt10b, and MGF remained unchanged. ERK 1/2 and p38 MAPK signaling were also upregulated after PFSS treatment. We conclude that MuSCs in their native niche are subjected to force-induced deformations due to myofiber stretch-shortening. Moreover, MuSCs are mechanoresponsive, as evidenced by PFSS-mediated expression of factors by MuSCs known to promote proliferation.


Assuntos
Músculo Esquelético , Mioblastos , Animais , Diferenciação Celular , Expressão Gênica , Camundongos , Estresse Mecânico
13.
Semin Cell Dev Biol ; 91: 45-54, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29784581

RESUMO

The vertebrate tongue is a complex muscular organ situated in the oral cavity and involved in multiple functions including mastication, taste sensation, articulation and the maintenance of oral health. Although the gross embryological contributions to tongue formation have been known for many years, it is only relatively recently that the molecular pathways regulating these processes have begun to be discovered. In particular, there is now evidence that the Hedgehog, TGF-Beta, Wnt and Notch signaling pathways all play an important role in mediating appropriate signaling interactions between the epithelial, cranial neural crest and mesodermal cell populations that are required to form the tongue. In humans, a number of congenital abnormalities that affect gross morphology of the tongue have also been described, occurring in isolation or as part of a developmental syndrome, which can greatly impact on the health and well-being of affected individuals. These anomalies can range from an absence of tongue formation (aglossia) through to diminutive (microglossia), enlarged (macroglossia) or bifid tongue. Here, we present an overview of the gross anatomy and embryology of mammalian tongue development, focusing on the molecular processes underlying formation of the musculature and connective tissues within this organ. We also survey the clinical presentation of tongue anomalies seen in human populations, whilst considering their developmental and genetic etiology.


Assuntos
Tecido Conjuntivo/embriologia , Músculos/embriologia , Crista Neural/embriologia , Língua/embriologia , Animais , Tecido Conjuntivo/anatomia & histologia , Tecido Conjuntivo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mamíferos/anatomia & histologia , Mamíferos/embriologia , Mamíferos/genética , Músculos/citologia , Músculos/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Organogênese/genética , Transdução de Sinais/genética , Língua/citologia , Língua/metabolismo
14.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769149

RESUMO

Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Crista Neural/patologia , Neuroblastoma/patologia , Quinase do Linfoma Anaplásico/análise , Quinase do Linfoma Anaplásico/genética , Animais , Criança , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Crista Neural/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Mapas de Interação de Proteínas
15.
Biomed Microdevices ; 21(2): 44, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30963305

RESUMO

In embryogenesis, mesenchymal condensation is a critical event during the formation of many organ systems, including cartilage and bone. During organ formation, mesenchymal cells aggregate and undergo compaction while activating developmental programmes. The final three-dimensional form of the organ, as well as cell fates, can be influenced by the size and shape of the forming condensation. This process is hypothesized to result from multiscale cell interactions within mesenchymal microenvironments; however, these are complex to investigate in vivo. Three-dimensional in vitro models that recapitulate key phenotypes can contribute to our understanding of the microenvironment interactions regulating this fundamental developmental process. Here we devise such models by using image analysis to guide the design of polydimethylsiloxane 3D microstructures as cell culture substrates. These microstructures establish geometrically constrained micromass cultures of mouse embryonic skeletal progenitor cells which influence the development of condensations. We first identify key phenotypes differentiating face and limb bud micromass cultures by linear discriminant analysis of the shape descriptors for condensation morphology, which are used to guide the rational design of a micropatterned polydimethylsiloxane substrate. High-content imaging analysis highlights that the geometry of the microenvironment affects the establishment and growth of condensations. Further, cells commit to establish condensations within the first 5 h; condensations reach their full size within 17 h; following which they increase cell density while maintaining size for at least 7 days. These findings elucidate the value of our model in dissecting key aspects of mesenchymal condensation development.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Animais , Adesão Celular , Dimetilpolisiloxanos/química , Células-Tronco Embrionárias/citologia , Fibronectinas/química , Camundongos , Imagem Molecular , Nylons/química , Propilaminas/química , Silanos/química
17.
Dev Biol ; 417(1): 4-10, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27395007

RESUMO

The skull is essential for protecting the brain from damage, and birth defects involving disorganization of skull bones are common. However, the developmental trajectories and molecular etiologies by which many craniofacial phenotypes arise remain poorly understood. Here, we report a novel skull defect in ciliopathic Fuz mutant mice in which only a single bone pair encases the forebrain, instead of the usual paired frontal and parietal bones. Through genetic lineage analysis, we show that this defect stems from a massive expansion of the neural crest-derived frontal bone. This expansion occurs at the expense of the mesodermally-derived parietal bones, which are either severely reduced or absent. A similar, though less severe, phenotype was observed in Gli3 mutant mice, consistent with a role for Gli3 in cilia-mediated signaling. Excess crest has also been shown to drive defective palate morphogenesis in ciliopathic mice, and that defect is ameliorated by reduction of Fgf8 gene dosage. Strikingly, skull defects in Fuz mutant mice are also rescued by loss of one allele of fgf8, suggesting a potential route to therapy. In sum, this work is significant for revealing a novel skull defect with a previously un-described developmental etiology and for suggesting a common developmental origin for skull and palate defects in ciliopathies.


Assuntos
Anormalidades Craniofaciais/embriologia , Osso Frontal/anormalidades , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Crista Neural/embriologia , Osso Parietal/anormalidades , Crânio/anormalidades , Animais , Ciliopatias/genética , Anormalidades Craniofaciais/genética , Proteínas do Citoesqueleto , Fator 8 de Crescimento de Fibroblasto/genética , Osso Frontal/embriologia , Dosagem de Genes/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Camundongos , Camundongos Transgênicos , Morfogênese , Osso Parietal/embriologia , Transdução de Sinais/genética , Proteína Gli3 com Dedos de Zinco
18.
Development ; 140(17): 3595-600, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23942515

RESUMO

The majority of cranial sensory neurons originate in placodes in the surface ectoderm, migrating to form ganglia that connect to the central nervous system (CNS). Interactions between inward-migrating sensory neuroblasts and emigrant cranial neural crest cells (NCCs) play a role in coordinating this process, but how the relationship between these two cell populations is established is not clear. Here, we demonstrate that NCCs generate corridors delineating the path of migratory neuroblasts between the placode and CNS in both chick and mouse. In vitro analysis shows that NCCs are not essential for neuroblast migration, yet act as a superior substrate to mesoderm, suggesting provision of a corridor through a less-permissive mesodermal territory. Early organisation of NCC corridors occurs prior to sensory neurogenesis and can be recapitulated in vitro; however, NCC extension to the placode requires placodal neurogenesis, demonstrating reciprocal interactions. Together, our data indicate that NCC corridors impose physical organisation for precise ganglion formation and connection to the CNS, providing a local environment to enclose migrating neuroblasts and axonal processes as they migrate through a non-neural territory.


Assuntos
Movimento Celular/fisiologia , Gânglios Sensitivos/embriologia , Crista Neural/fisiologia , Células-Tronco Neurais/fisiologia , Células Receptoras Sensoriais/fisiologia , Crânio/embriologia , Animais , Embrião de Galinha , Gânglios Sensitivos/citologia , Hibridização In Situ , Camundongos , Microscopia Confocal , Crânio/citologia
19.
Biochem Soc Trans ; 44(6): 1753-1759, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913686

RESUMO

Defects in the development of the mandible can lead to micrognathia, or small jaw, which manifests in ciliopathic conditions, such as orofaciodigital syndrome, Meckel-Gruber syndrome, and Bardet-Biedl syndrome. Although micrognathia occurs frequently in human and mouse ciliopathies, it has been difficult to pinpoint the underlying cellular causes. In this mini-review, we shed light on the tissue-specific contributions to ciliary dysfunction in the development of the mandible. First, we outline the steps involved in setting up the jaw primordium and subsequent steps in the outgrowth of the mandibular skeleton. We then determine the critical tissue interactions using mice carrying a conditional mutation in the cilia gene Ofd1 Our studies highlight the usefulness of the Ofd1 mouse model and illustrate long-term possibilities for understanding the cellular and biochemical events underlying micrognathia.


Assuntos
Ciliopatias/genética , Modelos Animais de Doenças , Micrognatismo/genética , Mutação , Animais , Cílios/metabolismo , Ciliopatias/metabolismo , Humanos , Mandíbula/embriologia , Mandíbula/metabolismo , Camundongos , Micrognatismo/metabolismo , Proteínas/genética , Proteínas/metabolismo
20.
Dev Biol ; 396(1): 1-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25300580

RESUMO

To feed or breathe, the oral opening must connect with the gut. The foregut and oral tissues converge at the primary mouth, forming the buccopharyngeal membrane (BPM), a bilayer epithelium. Failure to form the opening between gut and mouth has significant ramifications, and many craniofacial disorders have been associated with defects in this process. Oral perforation is characterized by dissolution of the BPM, but little is known about this process. In humans, failure to form a continuous mouth opening is associated with mutations in Hedgehog (Hh) pathway members; however, the role of Hh in primary mouth development is untested. Here, we show, using Xenopus, that Hh signaling is necessary and sufficient to initiate mouth formation, and that Hh activation is required in a dose-dependent fashion to determine the size of the mouth. This activity lies upstream of the previously demonstrated role for Wnt signal inhibition in oral perforation. We then turn to mouse mutants to establish that SHH and Gli3 are indeed necessary for mammalian mouth development. Our data suggest that Hh-mediated BPM persistence may underlie oral defects in human craniofacial syndromes.


Assuntos
Proteínas Hedgehog/metabolismo , Boca/embriologia , Animais , Membrana Basal/embriologia , Epitélio/embriologia , Fibronectinas/metabolismo , Trato Gastrointestinal/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Humanos , Imuno-Histoquímica , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Morfolinas/química , Boca/fisiologia , Proteínas do Tecido Nervoso/genética , Purinas/química , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Tempo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis , Proteína Gli3 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA