Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(34): e2204256119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35972965

RESUMO

Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Sequência Conservada , Cricetinae , Microscopia Crioeletrônica , Epitopos/imunologia , Humanos , Camundongos , Testes de Neutralização , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética
2.
J Virol ; 97(11): e0113723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855619

RESUMO

IMPORTANCE: The ongoing COVID-19 pandemic has been characterized by the emergence of new SARS-CoV-2 variants including the highly transmissible Omicron XBB sublineages, which have shown significant resistance to neutralizing antibodies (nAbs). This resistance has led to decreased vaccine effectiveness and therefore result in breakthrough infections and reinfections, which continuously threaten public health. To date, almost all available therapeutic nAbs, including those authorized under Emergency Use Authorization nAbs that were previously clinically useful against early strains, have recently been found to be ineffective against newly emerging variants. In this study, we provide a comprehensive structural basis about how the Class 3 nAbs, including 1G11 in this study and noted LY-CoV1404, are evaded by the newly emerged SARS-CoV-2 variants.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Pandemias , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , Infecções Irruptivas , COVID-19/imunologia , COVID-19/virologia
3.
Inorg Chem ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995694

RESUMO

Crystals with noncentrosymmetric structures are applied in many fields, but reported compounds have a high probability of forming a centrosymmetric structure. Here, by hydrogen-bonding the π-conjugated [C10H8NO2]+ cation with the separated [SiF6]2- octahedron, a noncentrosymmetric isoquinoline hexafluorosilicate monohydrate optical crystal of [C10H8NO2]2SiF6·H2O was formed under the regulatory influence of hydrogen bonding. It not only possesses a moderate second harmonic generation response (1.0 × KDP) but also has a large birefringence (0.282 at 550 nm), which is greater than those of most commercial birefringent crystals. In addition, the UV-vis-NIR diffuse reflectance spectrum and thermal stability analysis are also reported. Our finding gives insight into how to design noncentrosymmetric structural compounds in the organic-inorganic system.

4.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38426522

RESUMO

All-inorganic CsPbI2Br inverted perovskite solar cells (PSCs) have drawn increasing attention because of their outstanding thermal stability and compatible process with tandem cells. However, relatively low open circuit voltage (Voc) has lagged their progress far behind theoretical limits. Herein, we introduce phenylmethylammonium iodide and 4-trifluoromethyl phenylmethylammonium iodide (CFPMAI) on the surface of a CsPbI2Br perovskite film and investigate their passivation effects. It is found that CFPMAI with a -CF3 substituent significantly decreases the trap density of the perovskite film by forming interactions with the under-coordinated Pb2+ ions and effectively suppresses the non-radiative recombination in the resulting PSC. In addition, CFPMAI surface passivation facilitates the optimization of energy-level alignment at the CsPbI2Br perovskite/[6,6]-phenyl C61 butyric acid methyl ester interface, resulting in improved charge extraction from the perovskite to the charge transport layer. Consequently, the optimized inverted CsPbI2Br device exhibits a markedly improved champion efficiency of 14.43% with a Voc of 1.12 V, a Jsc of 16.31 mA/cm2, and a fill factor of 79.02%, compared to the 10.92% (Voc of 0.95 V) efficiency of the control device. This study confirms the importance of substituent groups on surface passivation molecules for effective passivation of defects and optimization of energy levels, particularly for Voc improvement.

5.
Appl Opt ; 63(1): 85-92, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175012

RESUMO

Optical probes are the preferred choice for high-precision surface metrology, necessitating improved flexibility and a broader range of motion to adapt to the increasing complexity of surfaces. This study introduces an interferometric probe designed for measuring aspheric surfaces, utilizing a wave-plate-array detection component. By integrating splitter elements into the detector, the probe improves integration and dynamic scanning performance, while maintaining high-precision measurement capability. The system design and working principle are explored, and comprehensive nonlinear models based on the Jones matrix theory are established. These models focus on the nonlinear errors arising from alignment errors in various cases. Moreover, rigorous numerical simulations and optical experiments are conducted to validate the proposed models. When the alignment error reaches 10°, it results in a maximum nonlinear error of 3.02 nm. The experimental results demonstrate the effectiveness of the models in capturing nonlinear errors induced by alignment errors, providing a theoretical foundation for error reduction and compensation.

6.
Planta Med ; 90(5): 368-379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423033

RESUMO

Photodynamic therapy is a noninvasive cancer treatment that utilizes photosensitizers to generate reactive oxygen species upon light exposure, leading to tumor cell apoptosis. Although photosensitizers have shown efficacy in clinical practice, they are associated with certain disadvantages, such as a certain degree of toxicity and limited availability. Recent studies have shown that natural product photosensitizers offer promising options due to their low toxicity and potential therapeutic effects. In this review, we provide a summary and evaluation of the current clinical photosensitizers that are commonly used and delve into the anticancer potential of natural product photosensitizers like psoralens, quinonoids, chlorophyll derivatives, curcumin, chrysophanol, doxorubicin, tetracyclines, Leguminosae extracts, and Lonicera japonica extract. The emphasis is on their phototoxicity, pharmacological benefits, and effectiveness against different types of diseases. Novel and more effective natural product photosensitizers for future clinical application are yet to be explored in further research. In conclusion, natural product photosensitizers have potential in photodynamic therapy and represent a promising area of research for cancer treatment.


Assuntos
Produtos Biológicos , Curcumina , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Curcumina/uso terapêutico , Neoplasias/tratamento farmacológico
7.
Curr Issues Mol Biol ; 46(1): 153-170, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38248314

RESUMO

Adaptation to thermal conditions in tidal mudflats always involves tolerating frequent fluctuations and often extreme environmental temperatures. Regulation of gene expression plays a fundamental role in the evolution of these thermal adaptations. To identify the key gene regulatory networks associated with the thermal adaptation, we investigated the capability of cold tolerance, as well as the transcriptomic changes under cold stress in two mudflat inhabitants (Odontamblyopus lacepedii and O. rebecca) with contrasting latitude affinity. Our results revealed a remarkable divergent capacity of cold tolerance (CTmin: 0.61 °C vs. 9.57 °C) between the two gobies. Analysis of transcriptomic changes under cold stress unveiled 193 differentially expressed genes exhibiting similar expression profiles across all tissues and species, including several classic metabolic and circadian rhythm molecules such as ACOD and CIART that may represent the core cold response machinery in eel gobies. Meanwhile, some genes show a unique expression spectrum in the more cold-tolerant O. lacepedii suggesting their roles in the enhanced cold tolerance and hence the extreme thermal adaptations. In addition, a weighted gene co-expression network analysis (WGCNA) revealed a subset of metabolic hub genes including MYH11 and LIPT2 showing distinct down-regulation in O. lacepedii when exposed to cold stress which highlights the role of reduced energy consumption in the enhanced cold tolerance of eel gobies. These findings not only provide new insights into how mudflat teleosts could cope with cold stress and their potential evolutionary strategies for adapting to their thermal environment, but also have important implications for sound management and conservation of their fishery resources in a scenario of global climate warming in the marine realm.

8.
Mol Ecol ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434292

RESUMO

Understanding the genetic structure and the factors associated with adaptive diversity has significant implications for the effective management of wild populations under threat from overfishing and climate change. The common hairfin anchovy (Setipinna tenuifilis) is an economically and ecologically important pelagic fish species, spanning a broad latitudinal gradient along marginal seas of the Northwest Pacific. In this study, we constructed the first reference genome of S. tenuifilis using PacBio long reads and high-resolution chromosome conformation capture (Hi-C) technology. The assembled genome was 798.38 Mb with a contig N50 of 1.43 Mb and a scaffold N50 of 32.42 Mb, which were anchored onto 24 pseudochromosomes. A total of 22,019 genes were functionally annotated, which accounted for 95.27% of the predicted protein-coding genes. Chromosomal collinearity analysis revealed chromosome fusion or fission events in Clupeiformes species. Three genetic groups of S. tenuifilis were revealed along the Chinese coast using restriction site-associated DNA sequencing (RADseq). We investigated the influence of four bioclimatic variables as potential drivers of adaptive divergence in S. tenuifilis, suggesting that these environmental variables, especially sea surface temperature, may play important roles as drivers of spatially varying selection for S. tenuifilis. We also identified candidate functional genes underlying adaptive mechanisms and ecological tradeoffs using redundancy analysis (RDA) and BayeScan analysis. In summary, this study sheds light on the evolution and spatial patterns of genetic variation of S. tenuifilis, providing a valuable genomic resource for further biological and genetic studies on this species and other closely related Clupeiformes.

9.
Appl Microbiol Biotechnol ; 107(2-3): 853-865, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36539564

RESUMO

The goal of bacterial engineering is to rewire metabolic pathways to generate high-value molecules for various applications. However, the production of recombinant proteins is constrained by the complexity of the connections between cellular physiology and recombinant protein synthesis. Here, we used a rational and highly efficient approach to improve bacterial engineering. Based on the complete genome and annotation information of the Escherichia coli ER2566 strain, we compared the transcriptomic profiles of the strain under leaky expression and low temperature-induced stress. Combining the gene ontology (GO) enrichment terms and differentially expressed genes (DEGs) with higher expression, we selected and knocked out 36 genes to determine the potential impact of these genes on protein production. Deletion of bluF, cydA, mngR, and udp led to a significant decrease in soluble recombinant protein production. Moreover, at low-temperature induction, 4 DEGs (gntK, flgH, flgK, flgL) were associated with enhanced expression of the recombinant protein. Knocking out several motility-related DEGs (ER2666-ΔflgH-ΔflgL-ΔflgK) simultaneously improved the protein yield by 1.5-fold at 24 °C induction, and the recombinant strain had the potential to be applied in the expression studies of different exogenous proteins, aiming to improve the yields of soluble form to varying degrees in comparison to the ER2566 strain. Totally, this study focused on the anabolic and stress-responsive hub genes of the adaptation of E. coli to recombinant protein overexpression on the transcriptome level and constructs a series of engineering strains increasing the soluble protein yield of recombinant proteins which lays a solid foundation for the engineering of bacterial strains for recombinant technological advances. KEY POINTS: • Comparative transcriptome analysis shows host responses with altered induction stress. • Deletion of bluF, cydA, mngR, and udp genes was identified to significantly decrease the soluble recombinant protein productions. • Synchronal knockout of flagellar genes in E. coli can enhance recombinant protein yield up to ~ 1.5-fold at 24 °C induction. • Non-model bacterial strains can be re-engineered for recombinant protein expression.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transcriptoma , Difosfato de Uridina/metabolismo , Engenharia Metabólica
10.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629073

RESUMO

Amblyopinae is one of the lineage of bony fish that preserves amphibious traits living in tidal mudflat habitats. In contrast to other active amphibious fish, Amblyopinae species adopt a seemly more passive lifestyle by living in deep burrows of mudflat to circumvent the typical negative effects associated with terrestriality. However, little is known about the genetic origin of these mudflat deep-burrowing adaptations in Amblyopinae. Here we sequenced the first genome of Amblyopinae species, Taenioides sp., to elucidate their mudflat deep-burrowing adaptations. Our results revealed an assembled genome size of 774.06 Mb with 23 pseudochromosomes anchored, which predicted 22,399 protein-coding genes. Phylogenetic analyses indicated that Taenioides sp. diverged from the active amphibious fish of mudskipper approximately 28.3 Ma ago. In addition, 185 and 977 putative gene families were identified to be under expansion, contraction and 172 genes were undergone positive selection in Taenioides sp., respectively. Enrichment categories of top candidate genes under significant expansion and selection were mainly associated with hematopoiesis or angiogenesis, DNA repairs and the immune response, possibly suggesting their involvement in the adaptation to the hypoxia and diverse pathogens typically observed in mudflat burrowing environments. Some carbohydrate/lipid metabolism, and insulin signaling genes were also remarkably alterated, illustrating physiological remolding associated with nutrient-limited subterranean environments. Interestingly, several genes related to visual perception (e.g., crystallins) have undergone apparent gene losses, pointing to their role in the small vestigial eyes development in Taenioides sp. Our work provide valuable resources for understanding the molecular mechanisms underlying mudflat deep-burrowing adaptations in Amblyopinae, as well as in other tidal burrowing teleosts.


Assuntos
Aclimatação , Perciformes , Animais , Filogenia , Mapeamento Cromossômico , Sequência de Bases , Enguias
11.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901796

RESUMO

The water-to-land transition is one of the most important events in evolutionary history of vertebrates. However, the genetic basis underlying many of the adaptations during this transition remains unclear. Mud-dwelling gobies in the subfamily Amblyopinae are one of the teleosts lineages that show terrestriality and provide a useful system for clarifying the genetic changes underlying adaptations to terrestrial life. Here, we sequenced the mitogenome of six species in the subfamily Amblyopinae. Our results revealed a paraphyletic origin of Amblyopinae with respect to Oxudercinae, which are the most terrestrial fishes and lead an amphibious life in mudflats. This partly explains the terrestriality of Amblyopinae. We also detected unique tandemly repeated sequences in the mitochondrial control region in Amblyopinae, as well as in Oxudercinae, which mitigate oxidative DNA damage stemming from terrestrial environmental stress. Several genes, such as ND2, ND4, ND6 and COIII, have experienced positive selection, suggesting their important roles in enhancing the efficiency of ATP production to cope with the increased energy requirements for life in terrestrial environments. These results strongly suggest that the adaptive evolution of mitochondrial genes has played a key role in terrestrial adaptions in Amblyopinae, as well as in Oxudercinae, and provide new insights into the molecular mechanisms underlying the water-to-land transition in vertebrates.


Assuntos
Genoma Mitocondrial , Perciformes , Animais , Perciformes/genética , Adaptação Fisiológica , Ecossistema , Água , Filogenia
12.
Curr Issues Mol Biol ; 44(6): 2490-2504, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35735611

RESUMO

The insulin-like peptide (ILP) family is well known for regulating reproduction in invertebrates, while its role in mollusks remains largely unknown. In this study, we first isolated and characterized the ILP gene in the cuttlefish Sepiella japonica. The full-length SjILP cDNA obtained was 926 bp and encoded a precursor protein of 161 amino acids. The precursor protein consisted of a signal peptide, a B chain, a C-peptide, and an A chain. It possessed the typical features of ILP proteins, including two cleavage sites (KR) and eight conserved cysteines. To define the function of SjILP, the expression of SjILP in different tissues and ovarian development stages were analyzed using qRT-PCR. SjILP was mainly expressed in the ovary, and its gene expression correlated with ovarian development. Furthermore, silencing SjILP using RNA interference (RNAi) dramatically decreased the expression levels of four ovarian-development-related genes (vitellogenin1, vitellogenin2, cathepsin L1-like, and follistatin). These data suggest the critical role of SjILP in the regulation of ovarian development in S. japonica.

13.
BMC Plant Biol ; 22(1): 486, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224553

RESUMO

BACKGROUND: The timing of bud break is very important for the flowering and fruiting of longan. To obtain new insights into the underlying regulatory mechanism of bud break in longan, a comparative analysis was conducted in three flower induction stages of two longan varieties with opposite flowering phenotypes by using isobaric tags for relative and absolute quantification (iTRAQ). RESULTS: In total, 3180 unique proteins were identified in 18 samples, and 1101 differentially abundant proteins (DAPs) were identified. "SX" ("Shixia"), a common longan cultivated variety that needs an appropriate period of low temperatures to accumulate energy and nutrients for flower induction, had a strong primary inflorescence, had a strong axillary inflorescence, and contained high contents of sugars, and most DAPs during the bud break process were enriched in assimilates and energy metabolism. Combined with our previous transcriptome data, it was observed that sucrose synthase 6 (SS6) and granule-bound starch synthase 1 (GBSSI) might be the key DAPs for "SX" bud break. Compared to those of "SX", the primary inflorescence, axillary inflorescence, floral primordium, bract, and prophyll of "SJ" ("Sijimi") were weaker. In addition, light, rather than a high sugar content or chilling duration, might act as the key signal for triggering bud break. In addition, catalase isozyme 1, an important enzyme in the redox cycle, and RuBisCO, a key enzyme in the Calvin cycle of photosynthetic carbon assimilation, might be the key DAPs for SJ bud break. CONCLUSION: Our results present a dynamic picture of the bud break of longan, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this fruit tree species.


Assuntos
Proteômica , Sintase do Amido , Carbono , Catalase/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Ribulose-Bifosfato Carboxilase/genética , Sapindaceae , Sintase do Amido/genética , Açúcares
14.
BMC Neurol ; 22(1): 259, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831795

RESUMO

BACKGROUND: Cerebral venous infarction (CVI) is a serious complication after meningioma resection. The risk factors of postoperative cerebral venous infarction after surgical resection of meningioma can be determined through large samples and this study can add evidence to the literature. METHODS: The clinical and imaging data of 1127 patients with intracranial meningiomas who underwent resection in our hospital were retrospectively collected and analyzed. CVI was evaluated by postoperative imaging and clinical manifestations. Univariate and multivariate analyses were performed to identify risk factors associated with CVI. RESULTS: Overall, 4.7% (53/1127) of patients experienced CVI after meningioma resection. Multivariate analysis revealed superficial meningioma, moderate to severe peritumoral edema, peritumoral critical vein and WHO grade II-III as independent predictors of a postoperative CVI. After timely intervention, the symptoms were clearly alleviated in one month, and the prognosis was good, but injury to key veins could cause irreversible neurological disorders. CONCLUSIONS: Intraoperative protection of veins is the primary way to prevent CVI. The present study identified several significant and independent risk factors for postoperative venous infarction, thereby enabling the identification of high-risk patients who require special attention during clinical and surgical management.


Assuntos
Neoplasias Meníngeas , Meningioma , Infarto Cerebral/complicações , Humanos , Neoplasias Meníngeas/complicações , Neoplasias Meníngeas/cirurgia , Meningioma/complicações , Meningioma/cirurgia , Estudos Retrospectivos , Fatores de Risco
15.
J Nanobiotechnology ; 20(1): 411, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109732

RESUMO

The major challenge to controlling the COVID pandemic is the rapid mutation rate of the SARS-CoV-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is essential to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-CoV-2 variants. Here, we report a synthetic nanobody (named C5G2) obtained by phage display and subsequent antibody engineering. C5G2 has a single-digit nanomolar binding affinity to the RBD domain and inhibits its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assays indicated that monovalent C5G2 could protect the cells from infection with SARS-CoV-2 wild-type virus and most of the viruses of concern, i.e., Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against Omicron BA.1 among all the variants, with an IC50 of 4.9 ng/mL. The cryo-EM structure of C5G2 in complex with the spike trimer showed that C5G2 binds to RBD mainly through its CDR3 at a conserved region that does not overlap with the ACE2 binding surface. Additionally, C5G2 binds simultaneously to the neighboring NTD domain of the spike trimer through the same CDR3 loop, which may further increase its potency against viral infection. Third, the steric hindrance caused by FR2 of C5G2 could inhibit the binding of ACE2 to RBD as well. Thus, this triple-function nanobody may serve as an effective drug for prophylaxis and therapy against Omicron as well as future variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , SARS-CoV-2 , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , COVID-19 , SARS-CoV-2/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Glicoproteína da Espícula de Coronavírus
16.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361695

RESUMO

Insulin-like peptide receptor (ILPR) can effectively regulate ovarian development in invertebrates, but its effect in cuttlefish has not been reported. We isolated and characterized a ILPR gene from Sepiella japonica, referred to as SjILPR. This gene displayed significant homologies to Octopus bimaculoides ILPR, and contained all typical features of insulin receptors and tyrosine kinase domain structure. SjILPR is expressed in all detected tissues, with the highest expression in the ovary. During ovarian development stages, its expression levels in the ovary, pancreas, and liver were correlated to the female reproductive cycle. After the silencing of SjILPR in vivo, comparative transcriptome analysis identified 4314 differentially expressed genes (DEGs) in the injected group, including 2586 down-regulated genes and 1728 up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that 832 DEGs were assigned to 222 pathways, many pathways of which were related to gonadal development. Four down-regulated genes relevant to ovarian development (Vitellogenin 1, Vitellogenin 2, Cathepsin L1-like, and Follistatin) were selected to confirm the accuracy of RNA-seq data by qRT-PCR. These results showed that SjILPR might regulate ovarian development to control reproduction by affecting the expression of the relevant genes in female S. japonica.


Assuntos
Decapodiformes , Receptor de Insulina , Animais , Feminino , Decapodiformes/genética , Decapodiformes/metabolismo , Receptor de Insulina/metabolismo , Insulina/metabolismo , Vitelogeninas/genética , Reprodução/genética , Transcriptoma , Receptores de Peptídeos/metabolismo , Perfilação da Expressão Gênica
17.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3915-3922, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-35850850

RESUMO

The study investigated the difference of intestinal absorption characteristics of root tuber of Cynanchum auriculatum extract between normal and functional dyspepsia(FD) model rats with everted intestine sac model.The content of syringic acid, scopoletin, caudatin, baishouwu benzophenone, qingyangshengenin and deacyhmetaplexigenin in the C.auriculatum extract in different intestinal segments was detected by UPLC-MS/MS.The cumulative absorption amount(Q) and absorption rate constant(K_a) of the six chemical constituents were calculated.The results showed that the six components could be absorbed into the intestinal sac and were unsaturated, which indicated that the absorption mechanism of scopoletin was active transport in the intestine, while that of the other five components were passive diffusion.For normal group, the syringic acid and baishouwu benzophenone in ileum, qingyangshengenin and deacyhmetaplexigenin in ileum and duodenum, and caudatin in colon were well absorbed and scopoletin at low, medium and high concentrations was found excellent absorption in jejunum, ileum, and colon, respectively.Whereas the best absorption site of each component was ileum in model group.The absorption characteristics of each component between normal group and model group were complex at different concentrations, showing inconsistent tendency of absorption, which suggested that the components of root tuber of C.auriculatum extract were selectively absorbed in small intestine, and the absorption characteristics of the six components could be changed under FD status.This study provided theoretical basis for the clinical drug application and development of root tuber of C.auriculatum.


Assuntos
Cynanchum , Medicamentos de Ervas Chinesas , Dispepsia , Animais , Benzofenonas , Cromatografia Líquida , Cynanchum/química , Dispepsia/tratamento farmacológico , Absorção Intestinal , Intestinos , Ratos , Escopoletina , Espectrometria de Massas em Tandem
18.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6340-6347, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36604878

RESUMO

The present study aimed to investigate the intestinal absorption characteristics of six components(syringic acid, scopoletin, baishouwu benzophenone, caudatin, qingyangshengenin, and deacylmetaplexigenin) in Cynanchum auriculatum extract. In situ intestinal circulation perfusion model was employed to investigate the differences in intestinal absorption characteristics of C. auriculatum extract under the influence of different intestinal segments, different drug concentrations, and bile in the normal and functional dyspepsia(FD) states. The results showed that the absorption of baishouwu benzophenone decreased with the increase in the concentration of C. auriculatum extract(P<0.01), while the absorption of syringic acid and other components increased in a dose-independent manner, suggesting that baishouwu benzophenone might follow active absorption, while other components might not be on a single absorption pattern. The main absorption sites of each component in the normal state were different from those in the FD state. The cumulative absorption conversion rates in the FD state were generally lower than those in the normal state, and bile inhibited the absorption of other components except for scopoletin in both states(P<0.05). As revealed, the small intestine showed selectivity to the absorption of drugs, and the pathological state(such as FD) and bile both affected the absorption of the main components, which provides a theoretical basis for the development of new drugs and further development of C. auriculatum.


Assuntos
Cynanchum , Escopoletina , Extratos Vegetais , Absorção Intestinal , Perfusão
19.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6355-6364, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36604880

RESUMO

In the present study, the excretion of four active components(qingyangshengenin, deacylmetaplexigenin, baishouwu benzophenone, and scopoletin) in Cynanchum auriculatum extract in the urine and feces of normal and functional dyspepsia(FD) rats was investigated. Rats were divided into a normal group and an FD model group. The FD model was induced by oral administration of ice hydrochloric acid combined with irregular feeding. The C. auriculatum extract was administered orally at a dose of 1 g·kg~(-1). The rat urine and feces were collected at 4, 8, 12, 24, 36, 48, 60, 72, and 84 h for UPLC-ESI-MS/MS analysis. The differences in excretion of the four components were compared between normal and FD rats. The results showed that except for the baishouwu benzophenone in the feces, the components such as qingyangshengenin in the urine and feces did not reach the plateau value within 84 h. Qingyangshengenin was mainly excreted through defecation, and the cumulative excretion rates in the normal state and FD were 0.32% and 0.66%, respectively. Deacylmetaplexigenin was mainly excreted through urination, and the cumulative excretion rates in the normal state and FD were 6.70% and 7.56%, respectively. Baishouwu benzophenone was mainly excreted through defecation in the normal state, but mainly excreted through urination in the FD state, with cumulative excretion rates of 0.41% and 0.52%, respectively. Scopoletin was mainly excreted through urination, with cumulative excretion rates of 0.83% and 2.13% in the normal state and FD, respectively. In general, the components were mainly excreted in the urine in the FD state. Compared with the normal group, the FD group showed decreased cumulative excretion rates of qingyangshengenin, baishouwu benzophenone, and scopoletin in the urine(P<0.05). Therefore, FD had a certain influence on the excretion of the main components of C. auriculatum extract, and the excretion of each component through urination and defecation was low, suggesting that there might be a wide range of metabolic pathways after oral administration and components were mainly excreted in the form of metabolites. This experiment provides a reference for the new drug development and clinical application of C. auriculatum.


Assuntos
Cynanchum , Dispepsia , Ratos , Animais , Espectrometria de Massas em Tandem , Escopoletina , Fezes , Extratos Vegetais
20.
Theor Appl Genet ; 134(1): 171-189, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32995899

RESUMO

KEY MESSAGE: QTL for 15 agronomic traits under two levels of salt stress in dry salinity field were mapped in a new constructed RIL population utilizing a Wheat55K SNP array. Furthermore, eight QTL were validated in a collected natural population. Soil salinity is one of the major abiotic stresses causing serious impact on crop growth, development and yield. As one of the three most important crops in the world, bread wheat (Triticum aestivum L.) is severely affected by salinity, too. In this study, an F7 recombinant inbred line (RIL) population derived from a cross between high-yield wheat cultivar Zhongmai 175 and salt-tolerant cultivar Xiaoyan 60 was constructed. The adult stage performances of the RIL population and their parent lines under low and high levels of salt stress were evaluated for three consecutive growing seasons. Utilizing a Wheat55K SNP array, a high-density genetic linkage map spinning 3250.71 cM was constructed. QTL mapping showed that 90 stable QTL for 15 traits were detected, and they were distributed on all wheat chromosomes except 4D, 6B and 7D. These QTL individually explained 2.34-32.43% of the phenotypic variation with LOD values ranging from 2.68 to 47.15. It was found that four QTL clusters were located on chromosomes 2D, 3D, 4B and 6A, respectively. Notably, eight QTL from the QTL clusters were validated in a collected natural population. Among them, QPh-4B was deduced to be an allele of Rht-B1. In addition, three kompetitive allele-specific PCR (KASP) markers derived from SNPs were successfully designed for three QTL clusters. This study provides an important base for salt-tolerant QTL (gene) cloning in wheat, and the markers, especially the KASP markers, will be useful for marker-assisted selection in salt-tolerant wheat breeding.


Assuntos
Locos de Características Quantitativas , Estresse Salino , Triticum/genética , Alelos , Mapeamento Cromossômico , Grão Comestível/genética , Ligação Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA