Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Microbiol ; 24(1): 292, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103761

RESUMO

Recent observational studies suggest that gut microorganisms are involved in the onset and development of coronavirus disease 2019 (COVID-19), but the potential causal relationship behind them remains unclear. Exposure data were derived from the MiBioGen consortium, encompassing 211 gut microbiota (n = 18,340). The outcome data were sourced from the COVID-19 host genetics initiative (round 7), including COVID-19 severity (n = 1,086,211), hospitalization (n = 2,095,324), and susceptibility (n = 2,597,856). First, a two-sample Mendelian randomization (TSMR) was performed to investigate the causal effect between gut microbiota and COVID-19 outcomes. Second, a two-step MR was used to explore the potential mediators and underlying mechanisms. Third, several sensitivity analyses were performed to verify the robustness of the results. Five gut microbes were found to have a potential causality with COVID-19 severity, namely Betaproteobacteria (beta = 0.096, p = 0.034), Christensenellaceae (beta = -0.092, p = 0.023), Adlercreutzia (beta = 0.072, p = 0.048), Coprococcus 1 (beta = 0.089, p = 0.032), Eisenbergiella (beta = 0.064, p = 0.024). Seven gut microbes were found to have a potential causality with COVID-19 hospitalization, namely Victivallaceae (beta = 0.037, p = 0.028), Actinomyces (beta = 0.047, p = 0.046), Coprococcus 2 (beta = -0.061, p = 0.031), Dorea (beta = 0.067, p = 0.016), Peptococcus (beta = -0.035, p = 0.049), Rikenellaceae RC9 gut group (beta = 0.034, p = 0.018), and Proteobacteria (beta = -0.069, p = 0.035). Two gut microbes were found to have a potential causality with COVID-19 susceptibility, namely Holdemanella (beta = -0.024, p = 0.023) and Lachnospiraceae FCS020 group (beta = 0.026, p = 0.027). Multi-omics mediation analyses indicate that numerous plasma proteins, metabolites, and immune factors are critical mediators linking gut microbiota with COVID-19 outcomes. Sensitivity analysis suggested no significant heterogeneity or pleiotropy. These findings revealed the causal correlation and potential mechanism between gut microbiota and COVID-19 outcomes, which may improve our understanding of the gut-lung axis in the etiology and pathology of COVID-19 in the future.


Assuntos
COVID-19 , Microbioma Gastrointestinal , SARS-CoV-2 , COVID-19/microbiologia , COVID-19/virologia , Humanos , Microbioma Gastrointestinal/genética , SARS-CoV-2/genética , Análise da Randomização Mendeliana , Hospitalização , Índice de Gravidade de Doença
2.
J Environ Sci (China) ; 25(8): 1712-7, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24520712

RESUMO

Octylphenols, considered as xenoestrogens, mainly exist as 4-tert-octylphenol (OP) in aquatic environments. The high stability and accumulation of OP in aquatic systems have caused endocrine disruption. The OP in surface water in Jinan, China was analyzed by gas chromatography-mass spectrometry (GC-MS) coupled with solid phase extraction (SPE). Water samples were extracted by SPE on a cartridge system containing C-18 as sorbent. To increase sensitivity and selectivity, OP was derivatized to 4-tert-octyl-phenoxy silane. With the use of phenanthrene-d10 as internal standard, the detection limit based on signal-to-noise ratio (S/N = 3) was 0.06 ng/mL. The average recovery was from 84.67% to 109.7%. The precision of the method given as the relative standard deviations (RSD) was within the range 6.24%-12.96%. In the target water samples, the concentrations of OP were as follows: 15.88-71.24 ng/L for Jinxiuchuan Reservoir, 3.850-26.68 ng/L for the city moat, 6.930-41.56 ng/L for Daming Lake, 66.03-474.2 ng/L for Xiaoqing River, 14.66-17.72 ng/L for the Yellow River, and 10.60-26.43 ng/L for Queshan Reservoir. The Xiaoqing River was seriously polluted due to the discharge of wastewater from Jinan. Jinxiuchuan Reservoir had a higher concentration of OP compared with the Yellow River and Queshan Reservoir, which is ascribed to the surrounding human activities. These data are reported for the first time, providing strong support for the control of OP pollution in Jinan.


Assuntos
Disruptores Endócrinos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fenóis/análise , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Calibragem , China , Controle de Qualidade
3.
Front Immunol ; 14: 1249017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146362

RESUMO

Objectives: Epidemiological studies suggested a potential connection between education and autoimmune disorders. This study investigated the possible cause-and-effect relationship using a Mendelian randomization approach. Methods: We explored the causality between four education traits (n = 257,841~1,131,881) and 22 autoimmune diseases. The mediating role of smoking (632,802 individuals), BMI (681,275 individuals), alcohol (335,394 individuals), and income (397,751 individuals) was also investigated. Transcriptome-wide association study (TWAS) and enriched signaling pathways analysis were used to investigate the underlying biological mechanisms. Results: Especially, higher cognitive performance was protective for psoriasis (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.60-0.79, p = 6.12×10-8), rheumatoid arthritis (RA) (OR = 0.75, 95% CI = 0.67-0.83, p = 4.62×10-6), and hypothyroidism (OR = 0.83, 95% CI = 0.77-0.90, p = 9.82×10-6). Higher levels of educational attainment decreased risks of psoriasis (OR = 0.61, 95% CI = 0.52-0.72, p = 1.12×10-9), RA (OR = 0.68, 95% CI = 0.59-0.79, p = 1.56×10-7), and hypothyroidism (OR = 0.80, 95% CI = 0.72-0.88, p = 5.00×10-6). The completion of highest-level math class genetically downregulates the incidence of psoriasis (OR = 0.66, 95% CI = 0.58-0.76, p = 2.47×10-9), RA (OR = 0.71, 95% CI = 0.63-0.81, p = 5.28×10-8), and hypothyroidism (OR = 0.85, 95% CI = 0.79-0.92, p = 8.88×10-5). Higher self-reported math ability showed protective effects on Crohn's disease (CD) (OR = 0.67, 95% CI = 0.55-0.81, p = 4.96×10-5), RA (OR = 0.76, 95% CI = 0.67-0.87, p = 5.21×10-5), and psoriasis (OR = 0.76, 95% CI = 0.65-0.88, p = 4.08×10-4). Protein modification and localization, response to arsenic-containing substances may participate in the genetic association of cognitive performance on UC, RA, psoriasis, and hypothyroidism. According to mediation analyses, BMI, smoking, and income served as significant mediators in the causal connection between educational traits and autoimmune diseases. Conclusion: Higher levels of education-related factors have a protective effect on the risk of several autoimmune disorders. Reducing smoking and BMI and promoting income equality can mitigate health risks associated with low education levels.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Hipotireoidismo , Psoríase , Humanos , Estudo de Associação Genômica Ampla , Escolaridade , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/genética , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/genética , Hipotireoidismo/epidemiologia , Hipotireoidismo/genética , Psoríase/epidemiologia , Psoríase/genética , Análise da Randomização Mendeliana
4.
ChemSusChem ; 12(8): 1732-1742, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30793532

RESUMO

Biomass-derived carbons have been extensively explored as electrode materials in supercapacitors. However, the type of biomass selected and its specific structure affects the synthesis of the advanced biomass-derived carbon materials. A green and facile method for the synthesis of carbon material with nanoscale and microscale porous structures for supercapacitors has been developed, based on regulating the original cell structure of the bacterial strain. The cell structure is modified in situ by regulating the accumulation of polyhydroxyalkanoate under controlled cultivation conditions. The novel bacterial in situ modification and nitrogen doping endow this hierarchically derived carbon material with improved performance. This material exhibits an extremely high specific capacitance (420 F g-1 at 1 A g-1 ) and long cycling stability (97 % capacitance retention after 10 000 cycles at 5 A g-1 ) in aqueous electrolytes. More importantly, the symmetric supercapacitor delivers a superior energy density of 60.76 Wh kg-1 at 625 W kg-1 in an ionic liquid electrolyte system. Moreover, all components in the synthesis are low in cost, environmentally friendly, and biocompatible. With these unique features, the bacterial self-modification mode opens new avenues into the design and production of a wide range of hierarchical structures.

5.
Bioresour Technol ; 272: 275-280, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30359881

RESUMO

Chemical pretreatment partially modified the structure of lignocellulose to enhance saccharification, leaving unaltered factors to limit further hydrolysis. To overcome these limitations, a biostrategy involving co-pretreatment combining bacteria with a chemical process was developed. A significant complementary effect was observed in specific co-pretreatments, e.g., ligninolytic bacteria enhanced acid pretreatment and saccharolytic bacteria enhanced alkaline pretreatment. Specifically, the ligninolytic bacterium Pandoraea sp. B-6 selectively removed the acidolysis-caused residual lignin and enhanced sugar release by 40.9% to 772.0 mg g-1 compared with that of acid-treated rice straw. After most of the lignin was removed, sugar release from alkali-treated RS was further improved by 31.8% to 820.2 mg g-1 via the saccharolytic bacterium Acinetobacter sp. B-2 through decrystallization. In the complementary mechanism, the active sites produced by chemical cleavage facilitated the bioprocess and further enhanced saccharification. This complementary mechanism provides a novel foundation for designing a rational combination pretreatment.


Assuntos
Acinetobacter/enzimologia , Biomassa , Burkholderiaceae/enzimologia , Lignina/metabolismo , Hidrólise , Oryza/química , Oryza/metabolismo
6.
Taehan Kanho Hakhoe Chi ; 38(4): 620-8, 2008 Aug.
Artigo em Coreano | MEDLINE | ID: mdl-18753814

RESUMO

PURPOSE: The purpose was to identify the effects of a Tai Chi exercise program on physical fitness, fall related perception and health status among institutionalized elderly. METHODS: A quasi-experimental research was carried out with a nonequivalent control group pretest-posttest design. There were 23 subjects in the experimental group and 24 in the control group. The data was gathered by structured questionnaires about fall related perception, and health status. Physical fitness was measured by an exercise therapist with a blind principle. RESULTS: At the completion of the 12 weeks Tai Chi exercise program, flexibility (F=4.50, p=.00), and ability to balance (F=3.27, p=.00) had increased significantly. Fall related perception showed significant improvement in the fear of falling (F=-3.52, p=.00). Physical functioning (F=3.38, p=.00), role limitation-physical (F=2.67, p=.01), role limitation-emotional (F=2.47, p=.02). and general health (F=3.88, p=.00) in health status showed significant differences between the two groups. CONCLUSION: The study findings revealed Tai Chi exercise as a useful nursing intervention for elderly that enhances flexibility and balance, decreases fall related perception and also increases the health status. Further research is warranted to compare the potential effects of Tai Chi exercise and its health benefits from other types of exercise or martial arts.


Assuntos
Acidentes por Quedas/prevenção & controle , Nível de Saúde , Aptidão Física , Tai Chi Chuan , Idoso , Idoso de 80 Anos ou mais , Centros Comunitários de Saúde , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Maleabilidade , Desenvolvimento de Programas , Amplitude de Movimento Articular , Inquéritos e Questionários
7.
Biotechnol Biofuels ; 11: 146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796087

RESUMO

BACKGROUND: Biological pretreatment is an important alternative strategy for biorefining lignocellulose and has attracted increasing attention in recent years. However, current designs for this pretreatment mainly focus on using various white rot fungi, overlooking the bacteria. To the best of our knowledge, for the first time, we evaluated the potential contribution of bacteria to lignocellulose pretreatment, with and without a physicochemical process, based on the bacterial strain Pandoraea sp. B-6 (hereafter B-6) that was isolated from erosive bamboo slips. Moreover, the mechanism of the improvement of reducing sugar yield by bacteria was elucidated via analyses of the physicochemical changes of corn stover (CS) before and after pretreatment. RESULTS: The digestibility of CS pretreated with B-6 was equivalent to that of untreated CS. The recalcitrant CS surface provided fewer mediators for contact with the extracellular enzymes of B-6. A pre-erosion strategy using a tetrahydrofuran-water co-solvent system was shown to destroy the recalcitrant CS surface. The optimal condition for pre-erosion showed a 6.5-fold increase in enzymatic digestibility compared with untreated CS. The pre-erosion of CS can expose more phenolic compounds that were chelated to oxidized Mn3+ and also provided mediators for combination with laccase, which was attributable to B-6 pretreatment. B-6 pretreatment following pre-erosion exhibited a sugar yield that was 91.2 mg/g greater than that of pre-erosion alone and 7.5-fold higher than that of untreated CS. This pre-erosion application was able to destroy the recalcitrant CS surface, thus leading to a rough and porous architecture that better facilitated the diffusion and transport of lignin derivatives. This enhanced the ability of laccase and manganese peroxidase secreted by B-6 to improve the efficiency of this biological pretreatment. CONCLUSION: Bacteria were not found useful alone as a biological pretreatment, but they significantly improved enzymatic digestion after lignocellulose breakdown via other physicochemical methods. Nonetheless, phenyl or phenoxy radicals were used by laccase and manganese peroxidase in B-6 for lignin attack or lignin depolymerization. These particular mediators released from the recalcitrance network of lignocellulose openings are important for the efficacy of this bacterial pretreatment. Our findings thus offer a novel perspective on the effective design of biological pretreatment methods for lignocellulose.

8.
Bioresour Technol ; 249: 154-160, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29040849

RESUMO

We studied a new strategy for pretreatment of rice straw (RS) to enhance enzymatic hydrolysis under mild condition. This approach uses the synergy of sodium carbonate (Na2CO3) and the bacterial strain Cupriavidus basilensis B-8 (hereafter B-8). After synergistic Na2CO3 and B-8 pretreatment (SNBP), the reducing sugar yield varied from 335.3mg/g to 799.6mg/g under different conditions. This increased by 13-31% over Na2CO3 pretreatment (284.2-719.2mg/g) and 3.42-8.15times over the untreated RS (98mg/g). Moreover, the composition of RS was changed significantly through decreases in lignin and hemicellulose. We confirmed this change by compositional analysis and physicochemical characterization of the structure of RS before and after pretreatment. We also elaborated a mechanism for SNBP to better explain RS changes and bacterial effects on enzymatic hydrolysis.


Assuntos
Carbonatos , Lignina , Celulase , Hidrólise , Oryza
9.
Bioresour Technol ; 257: 62-68, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29482167

RESUMO

Lignin depolymerization is a challenging process in biorefinery due to the recalcitrant and complex structure of lignin. This challenge was herein addressed via elaborating a new strategy of combining the bacterial strain Pandoraea sp. B-6 (hereafter B-6) with a deep eutectic solvent (DES) to pretreat rice straw (RS). In this approach, DES effectively depolymerized lignin yet easily caused sugar loss under severe conditions. B-6 not only overcame the obstacle of lignin droplets, but also significantly improved enzymatic digestibility. After B-6 assisted DES pretreatment, the reducing sugar yield increases by 0.3-1.5 times over DES pretreatment and 0.9-3.1 times over the untreated RS. Furthermore, a "cornhusking" mechanism explaining the improvement of the enzymatic digestibility by B-6 was suggested based on physicochemical characterizations of the untreated and pretreated RS. The findings provided a comprehensive perspective to establish a DES-microbial process for lignocellulose pretreatment.


Assuntos
Lignina , Solventes , Carboidratos , Hidrólise , Oryza , Polimerização
10.
Biotechnol Biofuels ; 11: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29445420

RESUMO

BACKGROUND: The recalcitrance of lignocellulosic biomass offers a series of challenges for biochemical processing into biofuels and bio-products. For the first time, we address these challenges with a biomimetic system via a mild yet rapid Fenton reaction and lignocellulose-degrading bacterial strain Cupriavidus basilensis B-8 (here after B-8) to pretreat the rice straw (RS) by mimicking the natural fungal invasion process. Here, we also elaborated the mechanism through conducting a systematic study of physicochemical changes before and after pretreatment. RESULTS: After synergistic Fenton and B-8 pretreatment, the reducing sugar yield was increased by 15.6-56.6% over Fenton pretreatment alone and 2.7-5.2 times over untreated RS (98 mg g-1). Morphological analysis revealed that pretreatment changed the surface morphology of the RS, and the increase in roughness and hydrophilic sites enhanced lignocellulose bioavailability. Chemical components analyses showed that B-8 removed part of the lignin and hemicellulose which caused the cellulose content to increase. In addition, the important chemical modifications also occurred in lignin, 2D NMR analysis of the lignin in residues indicated that the Fenton pretreatment caused partial depolymerization of lignin mainly by cleaving the ß-O-4 linkages and by demethoxylation to remove the syringyl (S) and guaiacyl (G) units. B-8 could depolymerize amount of the G units by cleaving the ß-5 linkages that interconnect the lignin subunits. CONCLUSIONS: A biomimetic system with a biochemical Fenton reaction and lignocellulose-degrading bacteria was confirmed to be able for the pretreatment of RS to enhance enzymatic hydrolysis under mild conditions. The high digestibility was attributed to the destruction of the lignin structure, partial hydrolysis of the hemicellulose and partial surface oxidation of the cellulose. The mechanism of synergistic Fenton and B-8 pretreatment was also explored to understand the change in the RS and the bacterial effects on enzymatic hydrolysis. Furthermore, this biomimetic system offers new insights into the pretreatment of lignocellulosic biomass.

11.
Bioresour Technol ; 245(Pt A): 419-425, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28898839

RESUMO

Pretreatment is indispensable for the large-scale and low-cost bio-products production from lignocellulosic biomass. Herein, a new bacteria-enhanced dilute acid pretreatment (BE-DAP) strategy was introduced. Cupriavidus basilensis B-8 as a potential bacterium for lignin degradation was employed. Multi-scale characterizations on the physicochemical structure of rice straw indicated that Cupriavidus basilensis B-8 could act on the lignin droplets formed in dilute acid pretreatment (DAP), and dig out these droplets to recover cracks and holes on rice straw surface, leaving an opened and porous structure for the easy access of enzyme to inner cellulose. Eventually, the enzymatic digestibility of RS was increased by 35-70% and 173-244% in BE-DAP compared to DAP pretreated and untreated RS, respectively. The BE-DAP strategy, as well as its physicochemical mechanism, opened new perspectives for lignocellulose pretreatment.


Assuntos
Celulose , Lignina , Bactérias , Biomassa , Hidrólise , Oryza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA